048

049

050

051

052

053

054

000 001

FAM: Relative Flatness Aware Minimization

Anonymous Authors¹

Abstract

Flatness of the loss curve around a model at hand has been shown to empirically correlate with its generalization ability. Optimizing for flatness has been proposed as early as 1994 by Hochreiter and Schmidthuber, and followed by more recent successful sharpness-aware optimization techniques. Their widespread adoption in practice, though, is dubious because of the lack of theoretically grounded connection between flatness and generalization, in particular in light of the reparameterization curse-certain reparameterizations of a neural network change most flatness measures but do not change generalization. Recent theoretical work suggests that a particular relative flatness measure can be connected to generalization and solves the reparameterization curse. In this paper, we derive a regularizer based on this relative flatness that is easy to compute, fast, efficient, and works with arbitrary loss functions. It requires computing the Hessian only of a single layer of the network, which makes it applicable to large neural networks, and with it avoids an expensive mapping of the loss surface in the vicinity of the model. In an extensive empirical evaluation we show that this relative flatness aware minimization (FAM) improves generalization in a multitude of applications and models, both in finetuning and standard training.

1. Introduction

It has been repeatedly observed that the generalization performance of a model at hand correlates with flatness of the loss curve, i.e., how much the loss changes under perturbations of the model parameters (Chaudhari et al., 2017; Keskar et al., 2017; Foret et al., 2021; Zheng et al., 2020; Sun et al., 2020; Wu et al., 2020; Liang et al., 2019; Yao et al., 2019). The large-scale study by Jiang et al. (2020) finds that such flatness-based measures have a higher correlation with generalization than alternatives like weight norms, margin-, and optimization-based measures. The general conclusion is that flatness-based measures show the most consistent correlation with generalization. Naturally, optimizing for flatness promises to obtain better generalizing models. Hochreiter & Schmidhuber (1994) already proposed in 1994 a theoretically solid approach to search for large flat regions by maximizing a box around the model in which the loss is low. More recently, it was shown that optimizing a flatness-based objective together with an L2-regularization performs remarkably well in practice on a variety of datasets and models (Foret et al., 2021). The theoretical connection to generalization has been questionable, though, in particular in light of negative results on reparametrizations of ReLU neural networks (Dinh et al., 2017): these reparameterizations change traditional measures of flatness, yet leave the model function and its generalization unchanged, making these measures unreliable.

Recent work (Petzka et al., 2021) has shown that generalization can be rigorously connected to flatness of the loss curve, resulting in a relative flatness measure that solves the reparameterization issue. That is, the generalization gap of a model depends on properties of the training set and a measure

$$\kappa(\mathbf{w}^l) := \sum_{s,s'=1}^d \langle \mathbf{w}_s^l, \mathbf{w}_{s'}^l \rangle \cdot Tr(H_{s,s'}(\mathbf{w}^l))$$

where $\mathbf{w}^l \in \mathbb{R}^{d \times m}$ are the weights between a selected layer l with m neurons and layer l + 1 with d neurons, $\langle \mathbf{w}_{s}^l, \mathbf{w}_{s'}^l \rangle = \mathbf{w}_s^l (\mathbf{w}_{s'}^l)^T$ the scalar product of two row vectors (composed of the weights into neurons with index s and s' in layer l + 1), and Tr denotes the trace. It is demonstrated that, measured on the penultimate layer, this measure highly correlates with generalization. Sharpnessaware minimization (SAM) (Foret et al., 2021) also optimizes for a measure of flatness, but is not reparameterization invariant—even under L2-regularization its invariance is unclear, in particular wrt. neuronwise reparameterizations. The reparameterization-invariant extension of SAM, ASAM (Kwon et al., 2021) is not theoretically connected to generalization.

In this paper, we implement the *relative flatness* measure of Petzka et al. (2021) as a regularizer for arbitrary loss functions and derive its gradient for optimization. A remarkable feature of the relative flatness measure is that it is only applied to a single layer of a neural network, in comparison to classical flatness (and sharpness) which takes

into account the entire network. Petzka et al. (2021) have shown that relative flatness in this layer corresponds to robustness to noise on the representation produced by this 058 layer. Therefore, FAM nudges the entire network to pro-059 duce a robust representation in the chosen layer, in essence 060 similar to adversarial training. At the same time, it does 061 not require flatness wrt. the other weights, opening up the 062 design space for good minima. Since it suffices to compute 063 relative flatness wrt. a single layer, this relative flatness 064 based regularizer and its gradient can be computed much 065 more efficiently than any full-Hessian based flatness mea-066 sure. Moreover, since the gradient can be computed directly, 067 no double backpropagation is required.

068 In an extensive empirical evaluation we show that the result-069 ing relative flatness aware minimization (FAM) improves 070 the generalization performance of neural networks in a wide 071 range of applications and network architectures: We im-072 prove test accuracy on image classification tasks (CIFAR10, CIFAR100, SVHN, and FashionMNIST) on ResNET18 074 (outperforming reported best results for this architecture), 075 WideResNET28-10, and EffNet-B7 and compare it to SAM 076 regularizer. In a second group of experiments we reduce 077 DICE-loss substantially on a medical shape reconstruction 078 tasks using autoencoders and stabilize the language model 079 finetuning.

081 Our contributions are (i) a novel regularizer (FAM) based on
082 relative flatness that is easy to implement, flexible, and compatible with any thrice-differentiable loss function, and (ii)
084 an extensive empirical evaluation where we show that FAM
085 regularization improves the generalization performance of a
086 wide range of neural networks in several applications.

2. Related Work

088

089

090 Flatness of the loss surface around the weight parameters 091 is intimately connected to the amount of information that 092 the model with these parameters can be described with, i.e., 093 if the region is flat enough and loss does not change, the 094 parameters can be described with less precision still allowing to have a good performing model. Correspondingly, 095 096 the models in the flat region generalize better (Hochreiter 097 & Schmidhuber, 1994). Hochreiter & Schmidhuber (1994) 098 investigated a regularization that leads to a flatter region in 099 the aforementioned sense. Their results have shown that 100 indeed such optimization leads to better performing models. Following up, flatness of a minimizer was used to explain generalization abilities of differently trained neural networks (Keskar et al., 2016), where it was specifically 104 emphasized that calculation of a Hessian for modern models is prohibitively costly. Originating from the minimum 106 description length criteria for finding better generalizing learning models, flatness became a pronounced concept in the search for generalization criteria of large neural net-109

works. The PAC-Bayes generalization bound rediscovers the connection of the Hessian as flatness characteristic with the generalization gap and the large-scale empirical evaluation (Jiang et al., 2020) shows that all the generalization measures based on flatness (in some definition) highly correlate with the actual performance of models.

Regularization (implicit or explicit) is de facto considered to be an answer to the good generalization abilities of an overparametrized model. New elaborate techniques of regularization allow to beat state-of-the-art results in various areas. Obviously, flatness can be considered as a good candidate for a structural regularization, but since the size of the modern models grew significantly after 1994, straightforward usage of the initial flatness measures is not feasible in the optimization. Analogously, approaches to flatness stimulation from averaging over solutions (Izmailov et al., 2018) cannot be backpropagated and directly used in the optimization process. The closest research to the flatness optimization is related to adversarial robustness-adversarial training aims at keeping the loss of a model on a constant (low) level in the surrounding of the training samples. Recent work proposes an optimizer for neural networks that is approximating the minimax problem of minimizing loss in the direction of the largest loss in the surrounding of the model. This sharpness aware minimization (SAM) (Foret et al., 2021) achieves state-of-the-art results in multiple tasks, e.g., SVHN, and allows for simple backpropagation through the proposed loss. However, the exact proposed *m*-sharpness does not entirely correspond to the theoretical motivation proposed by Foret et al. (2021) based on PAC-Bayes generalization bound, which might mean that the empirical success of SAM and its variants (Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2021; Liu et al., 2022a;b) cannot be explained by theoretical PAC-Bayes flatness of the solution (Andriushchenko & Flammarion, 2022; Wen et al., 2022).

3. Flatness Aware Minimization

In the following we give a detailed description of the proposed regularization. For a differentiable loss function $\ell(S, \mathbf{W})$ and a training set S, the regularized objective is

$$\ell(S, \mathbf{W}) + \lambda \kappa(\mathbf{w}^l)$$

where λ is the regularization coefficient and $\mathbf{w}^{l} \in \mathbb{R}^{m \times d}$ denote the weights from from layer l to l + 1. To optimize this objective, we compute its gradient (and omit the training set S in the notation for clarity):

$$\nabla_{\mathbf{W}}\ell(\mathbf{W}) + \lambda\kappa(\mathbf{w}^l) = \nabla_{\mathbf{W}}\ell(\mathbf{W}) + \lambda\nabla_{\mathbf{W}}\kappa(\mathbf{w}^l) \quad (1)$$

Here, $\nabla_{\mathbf{W}} \ell(\mathbf{W})$ is the standard gradient of the loss function. It remains to determine $\nabla_{\mathbf{W}} \kappa(\mathbf{w}^l)$.

Lemma 1. For a neural network with L layers and weights $\mathbf{W} = (\mathbf{w}^1, \dots, \mathbf{w}^L)$ with $\mathbf{w}^k \in \mathbb{R}^{O^k \times P^k}$ and a specific

$$\begin{bmatrix} layer \ l \in [L] \ with \ weights \ \mathbf{w}^{l} \in \mathbb{R}^{d \times m} \ it \ holds \ that \\ \end{bmatrix}_{i \in [d]} \\ \nabla_{\mathbf{W}} \kappa(\mathbf{w}^{l}) = e^{l} \left[2 \sum_{s=1}^{d} w_{s}^{l} Tr(H_{s,i}) \right]_{i \in [d]} + \\ \begin{bmatrix} l \\ \sum_{s,s'=1}^{d} \langle w_{s}^{l}, w_{s'}^{l} \rangle \sum_{t=1}^{m} \frac{\partial^{3} \ell(\mathbf{W})}{\partial \mathbf{w}_{o,p}^{k} \partial \mathbf{w}_{s,t}^{l} \partial \mathbf{w}_{s',t}^{l}} \end{bmatrix}_{\substack{p \in [P^{k}] \\ o \in [O^{k}]}} \\ \end{bmatrix}_{k \in [L]}$$

where e^l denotes the *l*-th standard unit vector in \mathbb{R}^L .

Proof.

Let us simplify both parts, starting with (I), which is = 0 for all $k \neq l$. For k = l it simplifies to

$$\begin{aligned} & \begin{array}{l} & \begin{array}{l} & 149 \\ & 150 \\ & 151 \\ & 152 \\ & 152 \\ & 153 \\ & 154 \\ & 155 \\ & 156 \end{array} \end{aligned} = \left[\sum_{s,s'=1}^{d} \left(\frac{\partial}{\partial \mathbf{w}_{i}^{l}} \left\langle w_{s}^{l}, w_{s'}^{l} \right\rangle \right) Tr\left(H_{s,s'} \right) \\ & \begin{array}{l} & \\ & \\ & \\ & \\ & 1 \leq i \leq d \end{aligned} \end{aligned}$$

Now for each $i \in [d]$ we have that

157

$$\sum_{s,s'=1}^{l} \left(\frac{\partial}{\partial \mathbf{w}_i^l} \left\langle w_s^l, w_{s'}^l \right\rangle \right) Tr\left(H_{s,s'}\right)$$

$$=2\sum_{s=1}^{n} w_s^l Tr(H_{s,i}) \quad .$$

where we have used the symmetry of $H_{s,s'}$ and the commutativity of the inner product in the last step. Therefore, it holds that

$$\begin{split} &\sum_{s,s'=1}^{d} \left(\frac{\partial}{\partial \mathbf{w}^{l}} \left\langle w_{s}^{l}, w_{s'}^{l} \right\rangle \right) Tr\left(H_{s,s'} \right) \\ &= \left[2 \sum_{s=1}^{d} \left\langle w_{s}^{l}, w_{i}^{l} \right\rangle Tr\left(H_{s,i} \right) \right]_{1 \leq i \leq d} \, . \end{split}$$

For the second part (II), let $\mathbf{w}^k \in \mathbb{R}^{O \times P}$. Then, $\frac{\partial}{\partial \mathbf{w}^k} Tr(H_{s,s'})$ can be expressed as

$$\begin{split} \frac{\partial}{\partial \mathbf{w}^{k}} Tr\left(H_{s,s'}\right) &= \frac{\partial}{\partial \mathbf{w}^{k}} Tr\left[\frac{\partial^{2}\ell(\mathbf{W})}{\partial \mathbf{w}_{s,t}^{l}\partial \mathbf{w}_{s',t'}^{l}}\right]_{1 \leq t,t' \leq m} \\ &= \frac{\partial}{\partial \mathbf{w}^{k}} \sum_{t=1}^{m} \frac{\partial^{2}\ell(\mathbf{W})}{\partial \mathbf{w}_{s,t}^{l}\partial \mathbf{w}_{s',t}^{l}} \\ &= \left[\sum_{t=1}^{m} \frac{\partial^{3}\ell(\mathbf{W})}{\partial \mathbf{w}_{s,p}^{k}\partial \mathbf{w}_{s,t}^{l}\partial \mathbf{w}_{s',t}^{l}}\right]_{\substack{1 \leq p \leq P\\ 1 \leq o \leq O}} \end{split}$$

Putting (I) and (II) together finally yields

$$\nabla_{\mathbf{W}} \kappa(\mathbf{w}^{l}) = e^{l} \left[2 \sum_{s=1}^{d} \left\langle w_{s}^{l}, w_{i}^{l} \right\rangle Tr\left(H_{s,i}\right) \right]_{1 \leq i \leq d} \\ + \left[\sum_{s,s'=1}^{d} \left\langle w_{s}^{l}, w_{s'}^{l} \right\rangle \sum_{t=1}^{m} \frac{\partial^{3} \ell(\mathbf{W})}{\partial \mathbf{w}_{s,p}^{k} \partial \mathbf{w}_{s,t}^{l} \partial \mathbf{w}_{s',t}^{l}} \right]_{\substack{1 \leq k \leq L \\ 1 \leq p \leq P^{k} \\ 1 \leq o \leq O^{k}}}$$

where e^l denotes the *l*-th standard unit vector in \mathbb{R}^L . \Box

3.1. Computational Complexity

Computing the FAM regularizer requires computing the Hessian wrt. the weights $\mathbf{w}^l \in \mathbb{R}^{d \times m}$ of the feature layer, which has computational complexity in $\mathcal{O}(d^2m^2)$. From this, the individual $H_{s,s'}$ can be selected. The inner product computation has complexity $\mathcal{O}(dm)$, so that the overall complexity of computing the regularizer is in $\mathcal{O}(d^2m^2)$.

In order to train with the FAM regularizer, we have to compute the gradient of the regularized loss wrt. the weights \mathbf{W} of the network. Computing the gradient of the loss function in equation 1 has complexity $\mathcal{O}(|\mathbf{W}|)$, where $|\mathbf{W}|$ denotes the number of parameters in \mathbf{W} . The computation of $\nabla_{\mathbf{W}}\kappa(\mathbf{w}^l)$ is decomposed into the sum of two parts in Lemma 1. The first part has complexity $\mathcal{O}(d^2m^2)$ for computing the Hessian and the inner product, as before. All parts in the sum, however, have already been computed when computing $\kappa(\mathbf{w}^l)$. The second part requires computing the derivative of the Hessians $H_{s,s'}$ wrt. each parameter

> 122 123

11

11

11

in W. Since we only need to compute the derivative wrt. the trace, i.e., the sum of diagonal elements, the complexity is in $\mathcal{O}(W)$. Therefore, the overall complexity of computing the FAM regularizer is in

$$\mathcal{O}\left(|W| + d^2m^2 + |\mathbf{W}|\right) = \mathcal{O}\left(|W| + d^2m^2\right)$$

That is, the additional computational costs for using the FAM regularizer is in $O(d^2m^2)$ per iteration, i.e., in the squared number of weights of the selected feature layer.

3.2. A Simplified Relative Flatness Measure

A more computationally efficient approximation to relative flatness, proposed by Petzka et al. (2019), does not iterate over individual neurons, but computes the weight norm of layer l and the trace of the Hessian wrt. layer l:

$$\widehat{\kappa}(\mathbf{w}^l) = \|\mathbf{w}^l\|_2^2 Tr(H) \quad .$$

Computing this measure not only avoids the loop over all 184 pairs of neurons $s, s' \in [d]$, but also allows us to approx-185 imate the trace of the Hessian, e.g., with Hutchinson's 186 method (Yao et al., 2020). On top of the computational 187 efficiency, the trace approximation reduces the memory 188 footprint, enabling us to employ FAM regularization to even 189 larger layers-including large convolutional layers. We pro-190 vide details on the implementation of Hessian computation 191 and Hessian trace approximation in Appendix A.

4. Experiments

170

171

172

173

174

175

176 177

178

179

180

181

182

183

193

In the following section we describe the empirical evalua-196 tion of the proposed flatness regularization. We compare the 197 performance of FAM to the baseline without flatness related optimization and to SAM. We use the SAM implementa-199 tion for pytorch¹ with the parameters of the base optimizer 200 recommended by the authors. It should be mentioned here that no matter of its popularity there is no official pytorch implementation of the SAM optimizer, which results in mul-203 titude of different implementations for each of the paper 204 using the approach. Moreover, there are multiple tricks that should be considered when using SAM, e.g., one should 206 take care of normalization layers and check on which of the two optimization steps they are active or non-active. We 208 run SAM for the same amount of epochs that FAM and 209 simple optimization, no matter that in the original work 210 the authors doubled the amount of epochs for non-SAM 211 approaches due to the doubled run time, thus giving SAM 212 an advantage in our experiments. Reported result for one of 213 the implementations of SAM on CIFAR10 with ResNet20 214 is 93.5% test accuracy ². This is the closest reported result 215 to our setup and it should be expected that ResNet18 shows 216 217

```
218 <sup>2</sup>https://github.com/moskomule/sam.pytorch
```

worse result than ResNet20. Unfortunately, the results for CIFAR100, SVHN, and FashionMNIST are not reported in the implementations of SAM for pytorch, and the application to medical reconstruction is not considered in previous works.

We use the FAM regularizer computed on the penultimate layer (or bottleneck layer), since it was demonstrated to be predictive of generalization in Petzka et al. (2021). Investigating the impact of the regularizer on other layers is left for future work.

Note on other flat-minima optimizers: There are several extensions of SAM (Kwon et al., 2021; Zhuang et al., 2022; Du et al., 2021; Liu et al., 2022a;b) and other flat-minima optimizers, e.g., (Chaudhari et al., 2019; Sankar et al., 2021). We follow Kaddour et al. (2022) and do not consider them in this work due to their computational cost and/or lack of performance gains.

4.1. Image Classification

Standard datasets for image classification are the baseline experiments that confirm the effectiveness of the proposed regularization. In particular, we worked with CIFAR10 and CIFAR100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), and FashionMNIST (Xiao et al., 2017). We compare our flatness regularized training to the state-of-theart flatness regularizer SAM. For this group of experiments we used the setups from the original SAM paper in order to compare to its performance. Nevertheless, due to the different implementation, the exact numbers reported seem to be unachievable-while we still see the improvement from using SAM optimizer, both no regularization baseline and SAM baseline are lower than in the original paper. For all experiments in this group we use the original neuronwise flatness measure for regularization without approximations introduced in Sec. 3.2.

4.1.1. CIFAR10

We have chosen ResNet18 as an architecture to solve CI-FAR10. While ResNet18 is not the state of the art for this problem, it allows to confirm the hypothesis about performance of our method. The reported accuracy of this architecture on CIFAR10 is 95.55%. In our experiments we compare this baseline, that is not using flatness-related optimizations to SAM approach and our proposed regularization. Standard augmentation strategy is applied, including randomized cropping and horizontal flipping and normalization of the images. For baseline training we use the following parameters of optimization: SGD with batch size 64, weight decay of 5e - 4, momentum 0.9, and cosine annealing learning rate starting at 0.03 during 250 epochs. For FAM the optimizer parameters are kept same and λ selected to be 0.1.

¹https://github.com/davda54/sam

Finally SAM was ran with SGD with a scheduler learning rate 0.01 and momentum 0.9.

We report the results we achieved in Table 1 on the line corresponding to CIFAR10.

4.1.2. CIFAR100

For solving this dataset we follow the approach taken by Foret et al. (2021). We use an EfficientNet (Tan & Le, 2019) (EffNet-B7) that is pretrained on ImageNet and then finetune it for CIFAR100. For standard training and FAM regularized training, the Adam optimizer had consistently the highest performance (compared to SGD and rmsprop) with a batch size of B = 32. The architecture achieves a baseline accuracy of 84.6 without regularization, and SAM achieves an accuracy of 85.8. The FAM regularizer improves the accuracy to 87.15.

4.1.3. SVHN AND FASHIONMNIST

Both SVHN and FashionMNIST problems are reported to reach state-of-the-art performance with SAM optimization using WideResNet28-10 architecture (Zagoruyko & Komodakis, 2016). It should be noted that SAM achieves the reported state-of-the-art result on these datasets when combined together with shake-shake regularization technique (Gastaldi, 2017), which we omitted.

The results reported by Foret et al. (2021) for SVHN are 248 obtained using the training dataset that includes extra data 249 (overall ~ 600000 images). Due to the time constraints we 250 report results of training using only main training dataset (\sim 70000 images). We apply AutoAugment SVHN policy (Cubuk et al., 2018), random cropping and horisontal 253 flip, cutout (DeVries & Taylor, 2017) with 1 hole of length 254 16 and normalization (using the CIFAR10 normalization pa-255 rameters). Our training parameters are 100 epochs, learning rate of 0.1 with a multistep decay by 0.2 after 0.3, 0.6 and 0.8 of the training epochs, batch size of 128, optimizer is 258 Nesterov SGD with momentum of 0.9 and weight decay of 259 5e - 4. For FAM we use $\lambda = 0.1$.

FashionMNIST we modify to have three channels (just by copying), resize to 32×32 , apply cutout with 1 hole of length 16, and normalize by 0.5. The training of Fashion-MNIST is very unstable and has oscillating learning curves with and without regularization. So, in one of the runs with SAM regularizer the training diverged completely. The used batch size is 64, learning rate is 0.01 with the same learning rate scheduler as for SVHN, the training is done for 200 epochs. Weight decay and momentum are set as in SVHN training.

Finally, in order to apply more computationally expensive
neuronwise flatness regularization, we add one more penultimate fully-connected layer in the architecture of WideRes-

Net with 64 neurons. Our experiments reveal that this additional layer does not change the outcome of the training in case of non-flatness regularized run.

With the described setup we did not achieve the accuracy reported in the original paper, that are 0.99 ± 0.01 error for SAM on SVHN with auto-augmentation and 1.14 ± 0.04 for baseline training on SVHN with auto-augmentation; 3.61 ± 0.06 error for SAM on FashionMNIST with cutout and 3.86 ± 0.14 for baseline training on FashionMNIST with cutout.

We report the results we achieved in Table 1 on the lines corresponding to SVHN and FashionMNIST.

Additionally, on the example of FashionMNIST training, we demonstrate (in Figure 1a) that FAM indeed allows to reach smoother loss development and leads to a better value, than SAM or baseline training. Analogous picture is observed in Figure 1b for the development of validation accuracy.

4.2. Medical Shape Reconstruction

3D shape reconstruction has important applications in both computer vision (Smith et al., 2020; Chibane et al., 2020) and medical imaging (Amiranashvili et al., 2022; Li et al., 2021). Learning-based methods for shape reconstruction has become increasingly popular in recent years, however, often suffer from generalization issues i.e., a neural network cannot generalize properly to shape variations that are not seen during training. In this experiment, we demonstrate that our FAM regularizer can effectively mitigate the generalization problem in a skull shape reconstruction task, where a neural network learns to reconstruct anatomically plausible skulls from defective ones (Li et al., 2021; Kodym et al., 2020). Here, due to the large size of the layers, we used the approximated layerwise flatness measure for FAM optimization.

4.2.1. DATASET

The skull dataset used in this experiment contains 100 binary skull images for training and another 100 for evaluation. The surface of a skull shape is constituted by the non-zero voxels (i.e., the '1's), and we create defective skulls by removing a portion of such voxels from each image. For the evaluation set, two defects are created for each image - one is similar to the defects in the training set while the other is significantly different in terms of its shape and size, as well as its position on the skull surface. The dimension of the skull images is 64^3 .

4.2.2. NETWORK ARCHITECTURE AND EXPERIMENTAL SETUP

The neural network ($\sim 1M$ trainable parameters) follows a standard auto-encoder architecture, in which five two-

Table 1. Results for Image Classification Tasks

Baseline FAM SAM CIFAR10 95.53 ± 0.0001 95.61 ± 0.001 $\mathbf{95.62} \pm \mathbf{0.002}$ CIFAR100 84.6 85.8 87.15**SVHN** 97.72 ± 0.02 $\mathbf{97.84} \pm \mathbf{0.05}$ 97.81 ± 0.07 FashionMNIST 94.57 ± 0.28 $\mathbf{94.99} \pm \mathbf{0.02}$ 94.6 ± 0.04

(a) Validation loss development during training of WideResNet on FashionMNIST, comparing the FAM regularizer to SAM and baseline training without regularization..

(b) Validation accuracy development during training of WideResNet on FashionMNIST.

Figure 1. Validation loss and accuracy development through FashionMNIST training.

303 strided convolutional and deconvolutional layers are used 304 for downsampling and upsampling respectively. The out-305 put of the last convolutional layer is flattened and linearly 306 mapped to an eight-dimensional latent code, which is then 307 decoded by another linear layer before being passed on to 308 the first deconvolution. The network takes as input a defec-309 tive skull and learns to reconstruct its defectless counterpart. 310 As a baseline we train the network using a Dice loss (Mil-311 letari et al., 2016), and a Dice loss combined with the FAM 312 regularizer, which is applied to the second linear layer (of 313 size 64×8) of the network. We experimented with dif-314 ferent coefficients λ that weigh the regularizer against the 315 Dice loss. All experiments use the Adam optimizer with 316 a constant learning rate of 10^{-4} . The trained models are 317 evaluated on the two aforementioned evaluation sets, using 318 Dice similarity coefficient (DSC), Hausdorff distance (HD), 319 and 95 percentile Hausdorff distance (HD95). DSC is the 320 main metric in practice for skull shape reconstruction (Li et al., 2021), measuring how well two shapes overlap (the higher the better³), while the distance measures i.e., HD and HD95 are supplementary. 324

327 328

329

275

276

278

279

280

281

282

297

299 300

301 302

4.2.3. RESULTS AND DISCUSSION

Figure 2 shows the Dice loss curves under different weighting coefficients λ . Table 2 shows the quantitative results on the two evaluation sets, and Figure 3 shows the distribution of the evaluation results for $\lambda = 0.02, 0.002, 0.0006$ and the baseline. The DSC (100), HD (100) and HD95 (100) columns in Table 2 show the evaluation results at an intermediate training checkpoint (epoch 100). These results reveal several interesting findings: (i) At both the intermediate (epoch=100) and end checkpoint (epoch=200), the training loss of the baseline network is clearly lower than that of the regularized networks (Figure 2), whereas its test accuracy is obviously worse than its regularized counterparts in terms of all metrics (Table 2); (ii) The baseline network achieves higher test accuracy (DSC) at the intermediate checkpoint than at the end checkpoint, which is a clear indicator of overfitting, while the test accuracy of a properly regularized network (e.g., $\lambda = 0.02, 0.002$) on either evaluation set 1 or evaluation set 2 keeps improving as training progresses; (iii) Even a very loose regularization (e.g., $\lambda = 0.0006$) can prevent the Dice loss from decreasing until overfitting, as opposed to the baseline network (Figure 2); (iv) It is also worth mentioning that the scores on both evaluation sets stay essentially unchanged for the FAM-regularized network (e.g., $\lambda = 0.02$), indicating that moderately al-

³²⁵ ³The Dice loss (Figure 2), on the contrary, is usually implemented as 1 - DSC, which we minimize during training.

Figure 2. Curves of the Dice loss (y axis) with respect to training epochs (x axis), under different λ . Note that the red ($\lambda = 0.1$) and purple ($\lambda = 0.7$) lines overlap in this plot.

Figure 3. Boxplots of DSC, HD and HD95 given different λ (x axis) on the two evaluation sets.

tering the defects (e.g., defect shape, size, position) does not affect the network's performance, while in contrast, the baseline network performs worse on evaluation set 2 than on evaluation set 1 in terms of all metrics.

Choosing a proper λ is important for a desired reconstruc-369 tive performance. A large λ enforces a flat(ter) curve of the 370 loss with respect to the weights of the second linear layer, 371 which is responsible for decoding the latent codes. However, over-regularization (in our case $\lambda = 0.1, 0.7$) can lead to un-373 varied shape reconstructions by the decoder, since, in order 374 for the loss to remain unchanged, the second linear layer 375 has to give the same decoding for different latent codes ⁴. 376 Therefore, the quantitative results for $\lambda = 0.1, 0.7$ in Table 377 2 should be interpreted with care, i.e., the over-regularized networks 'find' a universal reconstruction that somehow 378 379 matches well with different evaluation cases (hence achiev-380 ing relatively high DSC), which nevertheless defies the rule 381 of case-specific reconstruction.

Figure 4. Development loss of the RTE training.

4.3. Transformers

Since the introduction of transformers (Vaswani et al., 2017), large language models have revolutionized natural language processing by consistently pushing the state-of-the-art in various benchmark tasks (Devlin et al., 2019; Clark et al., 2020; He et al., 2021). However, a recurring challenge in the fine-tuning process of these models is the occurrence of instabilities (Hua et al., 2021; Mosbach et al., 2021). These instabilities can negatively impact the performance and reliability of the fine-tuned models. In the following section we, demonstrate how the application of FAM can improve the downstream performance of transformers.

We fine-tune $BERT_{BASE}$ (110 million parameters) (Devlin et al., 2019) to the Recognizing Textual Entailment (RTE) dataset (Dagan et al., 2006) from the General Language Understanding Evaluation benchmark (Wang et al., 2018). The dataset consists of sentence pairs with binary labels that indicate whether the meaning of one sentence is entailed from its counterpart. In the past, this particular dataset was found to be particularly prone to instabilities (Phang et al., 2018).

In stark contrast to other experiments, we chose a much larger weighting coefficient $\lambda = 3e6$, as lower values had no influence on the training. Our training setup involved a learning rate of $\lambda = 2e-5$, a batch size of 32, and a maximum sequence length of 128 for 20 epochs. We report the average development set accuracy across five runs with different random seeds. Table 3 presents the results of this experiment. Notably, we discovered that fine-tuning with FAM not only increases the model's accuracy but also reduces the standard deviation between runs. Moreover, we observed a progressive increase in validation loss throughout the training when the regularizer was not employed, indicating severe overfitting. While this phenomenon persisted with FAM, its effect was less pronounced, as depicted in Figure 4.

⁴Different skull shapes are expected to be encoded differently through the downsampling path of the auto-encoder.

FAM: Relative Flatness Aware Minimization

Table 2. Quantitative Results for Skull Shape Reconstruction Given Different λ

07													
8/	mathada			evalua	ation set 1				evalu	uation set 2	2		
38	methous	DSC	DSC (100)	HD	HD (100)	HD95	HD95(100)	DSC	DSC (100)	HD	HD (100)	HD95	HD95(100)
29	baseline	0.6464	0.6569	7.0130	7.1787	2.0635	2.0422	0.6413	0.6489	7.1421	7.1939	2.0924	2.1371
~	FAM, $\lambda = 0.0006$	0.7155	0.6817	6.5531	6.7772	1.8202	1.8281	0.7156	0.6762	6.5542	7.0115	1.8178	1.9088
0	FAM, $\lambda = 0.002$	0.7173	0.7175	6.4813	6.5478	1.8175	1.8281	0.7175	0.7176	6.4813	6.5478	1.8148	1.8281
1	FAM, $\lambda = 0.02$	0.7176	0.7168	6.5221	6.5271	1.8210	1.8344	0.7176	0.7168	6.5221	6.5271	1.8210	1.8344
-	FAM, $\lambda = 0.1$	0.7176	0.7169	6.5085	6.5222	1.8210	1.8345	0.7176	0.7169	6.5085	6.5222	1.8210	1.8345
2	FAM, $\lambda = 0.7$	0.7177	0.7169	6.5202	6.5389	1.8210	1.8359	0.7177	0.7169	6.5202	6.5389	1.8210	1.8359

Table 3. Results for the fine-tuning on the RTE validation set.

	Baseline	FAM
Accuracy	0.67364	0.6982
Standard Deviation	0.018	0.0154
Max	0.6931	0.7184

future work.

In summary, the FAM regularizer is theoretically sound, versatile and effective, requires no special loss function or optimizer and can be readily applied in all deep learning applications.

5. Discussion and Conclusion

We have shown that regularizing based on the theoretically sound relative flatness measure improves generalization in a wide range of applications and model architectures, outperforming standard training and sometimes sharpness aware minimization (Foret et al., 2021).

In our experiments (except for the skull reconstruction experiments, due to the specific architecture of the network), we have chosen the penultimate layer to compute relative flatness, as suggested by Petzka et al. (2021). We leave a comprehensive study of the impact of the choice of layer (or even using multiple layers) on model quality for future work.

Relative flatness is connected to generalization under the as-419 420 sumption of locally constant labels in the representation (Petzka et al., 2021). This assumption holds already for the input 421 space in many applications (e.g., image classification, and 422 423 NLP)-the definition of adversarial examples hinges on this assumption. It implies, however, that flatness is not con-424 nected to generalization for tasks where the assumption is 425 violated. The recent study by Kaddour et al. (2022) supports 426 this empirically by showing that regularizing wrt. flatness is 427 not always beneficial. For future work it would be interest-428 ing to verify this study with FAM, testing the assumption of 429 locally constant labels, and expanding it to further tasks. 430

431 While current implementation of the FAM regularizer allows 432 for achieving better performance, the performance with 433 respect to the space consumption can be improved. This 434 currently also limits the applicability to convolutional layers, 435 since treating them like a standard layer would increase the 436 number of parameters greatly. This can be overcome by 437 determining the correct structure of the FAM regularizer 438 for convolutional layers and is an interesting direction for 439

385 386

395

396

397

398

399

405

406

407

408 409

References

440

441

442

443

444

445

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

- Amiranashvili, T., Lüdke, D., Li, H. B., Menze, B., and Zachow, S. Learning shape reconstruction from sparse measurements with neural implicit functions. In *International Conference on Medical Imaging with Deep Learning*, pp. 22–34. PMLR, 2022.
- Andriushchenko, M. and Flammarion, N. Towards understanding sharpness-aware minimization. In *International Conference on Machine Learning*, pp. 639–668. PMLR, 2022. 2
 - Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J. T., Sagun, L., and Zecchina, R. Entropy-sgd: Biasing gradient descent into wide valleys. In *Proceedings of the International Conference of Learning Representations*, 2017. 1
 - Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina, R. Entropysgd: Biasing gradient descent into wide valleys. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(12):124018, 2019. 4
 - Chibane, J., Alldieck, T., and Pons-Moll, G. Implicit functions in feature space for 3d shape reconstruction and completion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6970–6981, 2020. 5
 - Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. ELECTRA: Pre-training text encoders as discriminators rather than generators. In *International Conference on Learning Representations*, 2020. 7
- 468 Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V.
 469 Autoaugment: Learning augmentation policies from data. *arXiv* preprint arXiv:1805.09501, 2018. 5
- Dagan, I., Glickman, O., and Magnini, B. The pascal recognising textual entailment challenge. In Quiñonero-Candela, J., Dagan, I., Magnini, B., and d'Alché Buc, F. (eds.), *Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment*, pp. 177– 190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 7
- 477 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: 478 Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long* 481 *and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, 482 June 2019. Association for Computational Linguistics. 7
- 483
 484
 485
 486
 487
 488
 485
 486
 487
 487
 487
 488
 488
 489
 489
 489
 489
 489
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
 480
- Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima can generalize for deep nets. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pp. 1019–1028. JMLR. org, 2017. 1
- 491 Du, J., Yan, H., Feng, J., Zhou, J. T., Zhen, L., Goh, R. S. M., and 492 Tan, V. Efficient sharpness-aware minimization for improved 493 training of neural networks. In *International Conference on Learning Representations*, 2021. 2, 4

- Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpnessaware minimization for efficiently improving generalization. In *Proceedings of the International Conference on Learning Representations*, 2021. 1, 2, 5, 8
- Gastaldi, X. Shake-shake regularization. *arXiv preprint arXiv:1705.07485*, 2017. 5
- He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-enhanced bert with disentangled attention. In *International Conference* on Learning Representations, 2021. 7
- Hochreiter, S. and Schmidhuber, J. Simplifying neural nets by discovering flat minima. In Advances in neural information processing systems. Curran Associates, Inc., 1994. 1, 2
- Hua, H., Li, X., Dou, D., Xu, C., and Luo, J. Noise stability regularization for improving bert fine-tuning. In *Proceedings* of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 3229–3241, 2021. 7
- Hutchinson, M. F. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. *Communications in Statistics-Simulation and Computation*, 19(2):433–450, 1990. 11
- Izmailov, P., Wilson, A., Podoprikhin, D., Vetrov, D., and Garipov, T. Averaging weights leads to wider optima and better generalization. In 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pp. 876–885, 2018. 2
- Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. Fantastic generalization measures and where to find them. In *International Conference on Learning Representations*, 2020. 1, 2
- Kaddour, J., Liu, L., Silva, R., and Kusner, M. When do flat minima optimizers work? In Advances in Neural Information Processing Systems. Curran Associates, Inc., 2022. 4, 8
- Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-batch training for deep learning: Generalization gap and sharp minima. In *Proceedings of International Conference on Learning Representations*, 2016. 2
- Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. On large-batch training for deep learning: Generalization gap and sharp minima. In *Proceedings of the International Conference on Learning Representatiosn*, 2017. 1
- Kodym, O., Španěl, M., and Herout, A. Skull shape reconstruction using cascaded convolutional networks. *Computers in Biology* and Medicine, 123:103886, 2020. 5
- Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009. 4
- Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks. In *International Conference on Machine Learning*, pp. 5905–5914. PMLR, 2021. 1, 2, 4
- Li, J., Pimentel, P., Szengel, A., Ehlke, M., Lamecker, H., Zachow, S., Estacio, L., Doenitz, C., Ramm, H., Shi, H., et al. Autoimplant 2020-first miccai challenge on automatic cranial implant design. *IEEE transactions on medical imaging*, 40(9): 2329–2342, 2021. 5, 6

- Liang, T., Poggio, T., Rakhlin, A., and Stokes, J. Fisher-rao metric, geometry, and complexity of neural networks. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2019. 1
- Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. Towards
 efficient and scalable sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12360–12370, 2022a. 2, 4
- Liu, Y., Mai, S., Cheng, M., Chen, X., Hsieh, C.-J., and You, Y.
 Random sharpness-aware minimization. *Advances in neural information processing systems*, 2022b. 2, 4

506

- Milletari, F., Navab, N., and Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV), pp. 565–571. Ieee, 2016. 6
- Mosbach, M., Andriushchenko, M., and Klakow, D. On the stability of fine-tuning {bert}: Misconceptions, explanations, and strong baselines. In *International Conference on Learning Representations*, 2021. 7
- 515 Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
 516 A. Reading digits in natural images with unsupervised fea517 ture learning. In *Advances in Neural Information Processing*518 *Systems*. Curran Associates, Inc., 2011. 4
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
 G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
 A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
 Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
 Pytorch: An imperative style, high-performance deep learning
 library. In *Advances in Neural Information Processing Systems*32, pp. 8024–8035. Curran Associates, Inc., 2019. 11
- Petzka, H., Adilova, L., Kamp, M., and Sminchisescu, C. A
 reparameterization-invariant flatness measure for deep neural
 networks. In *Science meets Engineering of Deep Learning 2019*.
 Neural Information Processing Systems (NIPS), 2019. 4
- Petzka, H., Kamp, M., Adilova, L., Sminchisescu, C., and Boley,
 M. Relative flatness and generalization. Advances in Neural Information Processing Systems, 34:18420–18432, 2021. 1, 2,
 4, 8
- Phang, J., Févry, T., and Bowman, S. R. Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks. *arXiv preprint arXiv:1811.01088*, 2018. 7
- Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Balasubramanian, V. N. A deeper look at the hessian eigenspectrum of deep neural networks and its applications to regularization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 9481–9488, 2021. 4
- Smith, E., Calandra, R., Romero, A., Gkioxari, G., Meger, D., Malik, J., and Drozdzal, M. 3d shape reconstruction from vision and touch. *Advances in Neural Information Processing Systems*, 33:14193–14206, 2020. 5
- Sun, X., Zhang, Z., Ren, X., Luo, R., and Li, L. Exploring the vulnerability of deep neural networks: A study of parameter corruption. *arXiv preprint arXiv:2006.05620*, 2020. 1

- Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019. 5
- Tropp, J. A. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12:389–434, 2012. 11
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. 7
- Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Linguistics. 7
- Wen, K., Ma, T., and Li, Z. How does sharpness-aware minimization minimizes sharpness? In OPT 2022: Optimization for Machine Learning workshop at NeurIPS, 2022. 2
- Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation helps robust generalization. In Advances in Neural Information Processing Systems, volume 33, pp. 2958–2969. Curran Associates, Inc., 2020. 1
- Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 4
- Yao, Z., Gholami, A., Lei, Q., Keutzer, K., and Mahoney, M. W. Hessian-based analysis of large batch training and robustness to adversaries. In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. 1
- Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Pyhessian: Neural networks through the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp. 581–590. IEEE, 2020. 4
- Zagoruyko, S. and Komodakis, N. Wide residual networks. *arXiv* preprint arXiv:1605.07146, 2016. 5
- Zheng, Y., Zhang, R., and Mao, Y. Regularizing neural networks via adversarial model perturbation. arXiv preprint arXiv:2010.04925, 2020. 1
- Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek, N. C., s Duncan, J., Liu, T., et al. Surrogate gap minimization improves sharpness-aware training. In *International Conference* on Learning Representations, 2022. 2, 4

Figure 5. Comparing non-vectorized and vectorized autograd, as well as functorch in terms of the computation time for computing the full Hessian of a single neural network layer for different layer sizes.

A. Hessian Computation and Approximation

In practice, the training time for FAM regularization depends on the method used for calculating the Hessian, respectively approximating its trace in case of the simplified relative flatness measure. In the following, we discuss several practical approaches in pytorch (Paszke et al., 2019).

A.1. Computation of the Full Hessian

Computing the Hessian, i.e., the second derivatives wrt. a neural network's weights, can straight-forwardly be done in pytorch using its autograd library. This method, however, is not optimized for runtime. The torch.autograd library also provides an experimental vectorized version of the Hessian computation. It uses a vectorization map as the backend to vectorize calls to autograd.grad, which means that it only invokes it once instead of once per row, making it more computationally efficient. We compare the non-vectorized to the vectorized variant of torch.autograd. Recently, the pytorch library functorch (in beta) provided a fast Hessian computation method build on top of the autograd library and also using a vectorization map. Additionally, it uses XLA, an optimized compiler for machine learning that accelerates linear algebra computations. This further accelerates Hessian computation, but does not yet work with all neural networks-in particular, the functorch Hessian computation requires batch normalization layers to not track the running statistics of training data. In Figure 5 we show that using the vectorized approach substantially reduces computation time by up to three orders of magnitude. For larger Hessians, the functorch library further improves runtime over the vectorized autograd method by an order of magnitude. All experiments are performed on an NVIDIA RTX A6000 GPU. 604

Figure 6. Computational time of the trace of the hessian for different layer sizes using Functorch and Hutchinson's method

A.2. Computation of the Trace of the Hessian

When the layers are high-dimensional, forming the full Hessian can be memory and computationally expensive. Since FAM requires the calculation of the trace of a Hessian, we apply the trick of using the Hutchinson's method (Hutchinson, 1990) to approximate the trace of the Hessian. The version of Hutchinson's trick we use is described as follows:

Let $A \in \mathbb{R}^{D \times D}$ and $v \in \mathbb{R}^D$ be a random vector such that $\mathbb{E}\left[vv^T\right] = I$. Then,

$$\operatorname{Tr}(A) = \mathbb{E}\left[v^T A v\right] = \frac{1}{V} \sum_{i=1}^{V} v_i^T A v_i.$$

where v is generated using Rademacher distribution and V is the number of Monte Carlo samples. The intuition behind this method is that by averaging over many random vectors, we can obtain an estimate of the trace of the matrix. It has been proved that the trace estimator converges with the smallest variance to the trace if we use Rademacher random numbers (Tropp, 2012). This method is in general very useful when we need to compute the trace of a function of a matrix.

Computational time for the direct functorch computation of the Hessian trace and for the Hutchinson's trick is shown in Figure 6.