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Abstract

Flatness of the loss curve around a model at hand
has been shown to empirically correlate with its
generalization ability. Optimizing for flatness has
been proposed as early as 1994 by Hochreiter and
Schmidthuber, and followed by more recent suc-
cessful sharpness-aware optimization techniques.
Their widespread adoption in practice, though,
is dubious because of the lack of theoretically
grounded connection between flatness and gen-
eralization, in particular in light of the reparame-
terization curse—certain reparameterizations of a
neural network change most flatness measures but
do not change generalization. Recent theoretical
work suggests that a particular relative flatness
measure can be connected to generalization and
solves the reparameterization curse. In this paper,
we derive a regularizer based on this relative flat-
ness that is easy to compute, fast, efficient, and
works with arbitrary loss functions. It requires
computing the Hessian only of a single layer of
the network, which makes it applicable to large
neural networks, and with it avoids an expensive
mapping of the loss surface in the vicinity of the
model. In an extensive empirical evaluation we
show that this relative flatness aware minimization
(FAM) improves generalization in a multitude of
applications and models, both in finetuning and
standard training.

1. Introduction
It has been repeatedly observed that the generalization per-
formance of a model at hand correlates with flatness of the
loss curve, i.e., how much the loss changes under pertur-
bations of the model parameters (Chaudhari et al., 2017;
Keskar et al., 2017; Foret et al., 2021; Zheng et al., 2020;
Sun et al., 2020; Wu et al., 2020; Liang et al., 2019; Yao
et al., 2019). The large-scale study by Jiang et al. (2020)
finds that such flatness-based measures have a higher cor-
relation with generalization than alternatives like weight
norms, margin-, and optimization-based measures. The gen-
eral conclusion is that flatness-based measures show the
most consistent correlation with generalization.

Naturally, optimizing for flatness promises to obtain better
generalizing models. Hochreiter & Schmidhuber (1994)
already proposed in 1994 a theoretically solid approach to
search for large flat regions by maximizing a box around the
model in which the loss is low. More recently, it was shown
that optimizing a flatness-based objective together with an
L2-regularization performs remarkably well in practice on
a variety of datasets and models (Foret et al., 2021). The
theoretical connection to generalization has been question-
able, though, in particular in light of negative results on
reparametrizations of ReLU neural networks (Dinh et al.,
2017): these reparameterizations change traditional mea-
sures of flatness, yet leave the model function and its gener-
alization unchanged, making these measures unreliable.

Recent work (Petzka et al., 2021) has shown that general-
ization can be rigorously connected to flatness of the loss
curve, resulting in a relative flatness measure that solves
the reparameterization issue. That is, the generalization gap
of a model depends on properties of the training set and a
measure

κ(wl) :=

d∑
s,s′=1

⟨wl
s,w

l
s′⟩ · Tr(Hs,s′(w

l)) ,

where wl ∈ Rd×m are the weights between a selected
layer l with m neurons and layer l + 1 with d neurons,
⟨wl

s,w
l
s′⟩ = wl

s(w
l
s′)

T the scalar product of two row vec-
tors (composed of the weights into neurons with index
s and s′ in layer l + 1), and Tr denotes the trace. It is
demonstrated that, measured on the penultimate layer, this
measure highly correlates with generalization. Sharpness-
aware minimization (SAM) (Foret et al., 2021) also opti-
mizes for a measure of flatness, but is not reparameteriza-
tion invariant—even under L2-regularization its invariance
is unclear, in particular wrt. neuronwise reparameteriza-
tions. The reparamterization-invariant extension of SAM,
ASAM (Kwon et al., 2021) is not theoretically connected to
generalization.

In this paper, we implement the relative flatness measure
of Petzka et al. (2021) as a regularizer for arbitrary loss
functions and derive its gradient for optimization. A re-
markable feature of the relative flatness measure is that it
is only applied to a single layer of a neural network, in
comparison to classical flatness (and sharpness) which takes
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into account the entire network. Petzka et al. (2021) have
shown that relative flatness in this layer corresponds to ro-
bustness to noise on the representation produced by this
layer. Therefore, FAM nudges the entire network to pro-
duce a robust representation in the chosen layer, in essence
similar to adversarial training. At the same time, it does
not require flatness wrt. the other weights, opening up the
design space for good minima. Since it suffices to compute
relative flatness wrt. a single layer, this relative flatness
based regularizer and its gradient can be computed much
more efficiently than any full-Hessian based flatness mea-
sure. Moreover, since the gradient can be computed directly,
no double backpropagation is required.

In an extensive empirical evaluation we show that the result-
ing relative flatness aware minimization (FAM) improves
the generalization performance of neural networks in a wide
range of applications and network architectures: We im-
prove test accuracy on image classification tasks (CIFAR10,
CIFAR100, SVHN, and FashionMNIST) on ResNET18
(outperforming reported best results for this architecture),
WideResNET28-10, and EffNet-B7 and compare it to SAM
regularizer. In a second group of experiments we reduce
DICE-loss substantially on a medical shape reconstruction
tasks using autoencoders and stabilize the language model
finetuning.

Our contributions are (i) a novel regularizer (FAM) based on
relative flatness that is easy to implement, flexible, and com-
patible with any thrice-differentiable loss function, and (ii)
an extensive empirical evaluation where we show that FAM
regularization improves the generalization performance of a
wide range of neural networks in several applications.

2. Related Work
Flatness of the loss surface around the weight parameters
is intimately connected to the amount of information that
the model with these parameters can be described with, i.e.,
if the region is flat enough and loss does not change, the
parameters can be described with less precision still allow-
ing to have a good performing model. Correspondingly,
the models in the flat region generalize better (Hochreiter
& Schmidhuber, 1994). Hochreiter & Schmidhuber (1994)
investigated a regularization that leads to a flatter region in
the aforementioned sense. Their results have shown that
indeed such optimization leads to better performing mod-
els. Following up, flatness of a minimizer was used to
explain generalization abilities of differently trained neural
networks (Keskar et al., 2016), where it was specifically
emphasized that calculation of a Hessian for modern mod-
els is prohibitively costly. Originating from the minimum
description length criteria for finding better generalizing
learning models, flatness became a pronounced concept in
the search for generalization criteria of large neural net-

works. The PAC-Bayes generalization bound rediscovers
the connection of the Hessian as flatness characteristic with
the generalization gap and the large-scale empirical evalu-
ation (Jiang et al., 2020) shows that all the generalization
measures based on flatness (in some definition) highly cor-
relate with the actual performance of models.

Regularization (implicit or explicit) is de facto considered to
be an answer to the good generalization abilities of an over-
parametrized model. New elaborate techniques of regular-
ization allow to beat state-of-the-art results in various areas.
Obviously, flatness can be considered as a good candidate
for a structural regularization, but since the size of the mod-
ern models grew significantly after 1994, straightforward
usage of the initial flatness measures is not feasible in the op-
timization. Analogously, approaches to flatness stimulation
from averaging over solutions (Izmailov et al., 2018) cannot
be backpropagated and directly used in the optimization
process. The closest research to the flatness optimization is
related to adversarial robustness—adversarial training aims
at keeping the loss of a model on a constant (low) level in the
surrounding of the training samples. Recent work proposes
an optimizer for neural networks that is approximating the
minimax problem of minimizing loss in the direction of the
largest loss in the surrounding of the model. This sharpness
aware minimization (SAM) (Foret et al., 2021) achieves
state-of-the-art results in multiple tasks, e.g., SVHN, and al-
lows for simple backpropagation through the proposed loss.
However, the exact proposed m-sharpness does not entirely
correspond to the theoretical motivation proposed by Foret
et al. (2021) based on PAC-Bayes generalization bound,
which might mean that the empirical success of SAM and
its variants (Kwon et al., 2021; Zhuang et al., 2022; Du et al.,
2021; Liu et al., 2022a;b) cannot be explained by theoreti-
cal PAC-Bayes flatness of the solution (Andriushchenko &
Flammarion, 2022; Wen et al., 2022).

3. Flatness Aware Minimization
In the following we give a detailed description of the pro-
posed regularization. For a differentiable loss function
ℓ(S,W) and a training set S, the regularized objective is

ℓ(S,W) + λκ(wl) ,

where λ is the regularization coefficient and wl ∈ Rm×d

denote the weights from from layer l to l + 1. To optimize
this objective, we compute its gradient (and omit the training
set S in the notation for clarity):

∇Wℓ(W) + λκ(wl) = ∇Wℓ(W) + λ∇Wκ(wl) (1)

Here, ∇Wℓ(W) is the standard gradient of the loss function.
It remains to determine ∇Wκ(wl).
Lemma 1. For a neural network with L layers and weights
W = (w1, . . . ,wL) with wk ∈ ROk×Pk

and a specific
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layer l ∈ [L] with weights wl ∈ Rd×m it holds that

∇Wκ(wl) = el

[
2

d∑
s=1

wl
sTr (Hs,i)

]
i∈[d]

+


 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t


p∈[Pk]

o∈[Ok]


k∈[L]

where el denotes the l-th standard unit vector in RL.

Proof.

∇Wκ(wl) = ∇W

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
Tr (Hs,s′)

=

d∑
s,s′=1

(
∇W

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

+

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
∇WTr (Hs,s′)

=


d∑

s,s′=1

(
∂

∂wk

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)︸ ︷︷ ︸
(I)


1≤k≤L

+


d∑

s,s′=1

〈
wl

s, w
l
s′
〉 ∂

∂wk
Tr (Hs,s′)︸ ︷︷ ︸

(II)


1≤k≤L

Let us simplify both parts, starting with (I), which is = 0
for all k ̸= l. For k = l it simplifies to

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

 d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)


1≤i≤d

Now for each i ∈ [d] we have that

d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=2

d∑
s=1

wl
sTr (Hs,i) ,

where we have used the symmetry of Hs,s′ and the commu-
tativity of the inner product in the last step. Therefore, it
holds that

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

.

For the second part (II), let wk ∈ RO×P . Then,
∂

∂wk Tr (Hs,s′) can be expressed as

∂

∂wk
Tr (Hs,s′) =

∂

∂wk
Tr

[
∂2ℓ(W)

∂wl
s,t∂w

l
s′,t′

]
1≤t,t′≤m

=
∂

∂wk

m∑
t=1

∂2ℓ(W)

∂wl
s,t∂w

l
s′,t

=

[
m∑
t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t

]
1≤p≤P
1≤o≤O

Putting (I) and (II) together finally yields

∇Wκ(wl) = el

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

+

 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t


1≤k≤L

1≤p≤Pk

1≤o≤Ok

where el denotes the l-th standard unit vector in RL.

3.1. Computational Complexity

Computing the FAM regularizer requires computing the
Hessian wrt. the weights wl ∈ Rd×m of the feature layer,
which has computational complexity in O

(
d2m2

)
. From

this, the individual Hs,s′ can be selected. The inner product
computation has complexity O (dm), so that the overall
complexity of computing the regularizer is in O

(
d2m2

)
.

In order to train with the FAM regularizer, we have to com-
pute the gradient of the regularized loss wrt. the weights
W of the network. Computing the gradient of the loss
function in equation 1 has complexity O (|W|), where |W|
denotes the number of parameters in W. The computation
of ∇Wκ(wl) is decomposed into the sum of two parts in
Lemma 1. The first part has complexity O

(
d2m2

)
for com-

puting the Hessian and the inner product, as before. All
parts in the sum, however, have already been computed
when computing κ(wl). The second part requires comput-
ing the derivative of the Hessians Hs,s′ wrt. each parameter
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in W. Since we only need to compute the derivative wrt. the
trace, i.e., the sum of diagonal elements, the complexity is
in O (W). Therefore, the overall complexity of computing
the FAM regularizer is in

O
(
|W |+ d2m2 + |W|

)
= O

(
|W |+ d2m2

)
.

That is, the additional computational costs for using the
FAM regularizer is in O

(
d2m2

)
per iteration, i.e., in the

squared number of weights of the selected feature layer.

3.2. A Simplified Relative Flatness Measure

A more computationally efficient approximation to relative
flatness, proposed by Petzka et al. (2019), does not iterate
over individual neurons, but computes the weight norm of
layer l and the trace of the Hessian wrt. layer l:

κ̂(wl) = ∥wl∥22Tr (H) .

Computing this measure not only avoids the loop over all
pairs of neurons s, s′ ∈ [d], but also allows us to approx-
imate the trace of the Hessian, e.g., with Hutchinson’s
method (Yao et al., 2020). On top of the computational
efficiency, the trace approximation reduces the memory
footprint, enabling us to employ FAM regularization to even
larger layers—including large convolutional layers. We pro-
vide details on the implementation of Hessian computation
and Hessian trace approximation in Appendix A.

4. Experiments
In the following section we describe the empirical evalua-
tion of the proposed flatness regularization. We compare the
performance of FAM to the baseline without flatness related
optimization and to SAM. We use the SAM implementa-
tion for pytorch 1 with the parameters of the base optimizer
recommended by the authors. It should be mentioned here
that no matter of its popularity there is no official pytorch
implementation of the SAM optimizer, which results in mul-
titude of different implementations for each of the paper
using the approach. Moreover, there are multiple tricks that
should be considered when using SAM, e.g., one should
take care of normalization layers and check on which of the
two optimization steps they are active or non-active. We
run SAM for the same amount of epochs that FAM and
simple optimization, no matter that in the original work
the authors doubled the amount of epochs for non-SAM
approaches due to the doubled run time, thus giving SAM
an advantage in our experiments. Reported result for one of
the implementations of SAM on CIFAR10 with ResNet20
is 93.5% test accuracy 2. This is the closest reported result
to our setup and it should be expected that ResNet18 shows

1https://github.com/davda54/sam
2https://github.com/moskomule/sam.pytorch

worse result than ResNet20. Unfortunately, the results for
CIFAR100, SVHN, and FashionMNIST are not reported in
the implementations of SAM for pytorch, and the applica-
tion to medical reconstruction is not considered in previous
works.

We use the FAM regularizer computed on the penultimate
layer (or bottleneck layer), since it was demonstrated to be
predictive of generalization in Petzka et al. (2021). Inves-
tigating the impact of the regularizer on other layers is left
for future work.

Note on other flat-minima optimizers: There are several
extensions of SAM (Kwon et al., 2021; Zhuang et al., 2022;
Du et al., 2021; Liu et al., 2022a;b) and other flat-minima
optimizers, e.g., (Chaudhari et al., 2019; Sankar et al., 2021).
We follow Kaddour et al. (2022) and do not consider them
in this work due to their computational cost and/or lack of
performance gains.

4.1. Image Classification

Standard datasets for image classification are the baseline
experiments that confirm the effectiveness of the proposed
regularization. In particular, we worked with CIFAR10 and
CIFAR100 (Krizhevsky & Hinton, 2009), SVHN (Netzer
et al., 2011), and FashionMNIST (Xiao et al., 2017). We
compare our flatness regularized training to the state-of-the-
art flatness regularizer SAM. For this group of experiments
we used the setups from the original SAM paper in order
to compare to its performance. Nevertheless, due to the
different implementation, the exact numbers reported seem
to be unachievable—while we still see the improvement
from using SAM optimizer, both no regularization baseline
and SAM baseline are lower than in the original paper. For
all experiments in this group we use the original neuronwise
flatness measure for regularization without approximations
introduced in Sec. 3.2.

4.1.1. CIFAR10

We have chosen ResNet18 as an architecture to solve CI-
FAR10. While ResNet18 is not the state of the art for
this problem, it allows to confirm the hypothesis about per-
formance of our method. The reported accuracy of this
architecture on CIFAR10 is 95.55%. In our experiments we
compare this baseline, that is not using flatness-related opti-
mizations to SAM approach and our proposed regularization.
Standard augmentation strategy is applied, including ran-
domized cropping and horizontal flipping and normalization
of the images. For baseline training we use the following
parameters of optimization: SGD with batch size 64, weight
decay of 5e−4, momentum 0.9, and cosine annealing learn-
ing rate starting at 0.03 during 250 epochs. For FAM the
optimizer parameters are kept same and λ selected to be 0.1.

https://github.com/davda54/sam
https://github.com/moskomule/sam.pytorch
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Finally SAM was ran with SGD with a scheduler learning
rate 0.01 and momentum 0.9.

We report the results we achieved in Table 1 on the line
corresponding to CIFAR10.

4.1.2. CIFAR100

For solving this dataset we follow the approach taken by
Foret et al. (2021). We use an EfficientNet (Tan & Le, 2019)
(EffNet-B7) that is pretrained on ImageNet and then finetune
it for CIFAR100. For standard training and FAM regularized
training, the Adam optimizer had consistently the highest
performance (compared to SGD and rmsprop) with a batch
size of B = 32. The architecture achieves a baseline ac-
curacy of 84.6 without regularization, and SAM achieves
an accuracy of 85.8. The FAM regularizer improves the
accuracy to 87.15.

4.1.3. SVHN AND FASHIONMNIST

Both SVHN and FashionMNIST problems are reported to
reach state-of-the-art performance with SAM optimization
using WideResNet28-10 architecture (Zagoruyko & Ko-
modakis, 2016). It should be noted that SAM achieves
the reported state-of-the-art result on these datasets when
combined together with shake-shake regularization tech-
nique (Gastaldi, 2017), which we omitted.

The results reported by Foret et al. (2021) for SVHN are
obtained using the training dataset that includes extra data
(overall ∼ 600000 images). Due to the time constraints we
report results of training using only main training dataset
(∼ 70000 images). We apply AutoAugment SVHN pol-
icy (Cubuk et al., 2018), random cropping and horisontal
flip, cutout (DeVries & Taylor, 2017) with 1 hole of length
16 and normalization (using the CIFAR10 normalization pa-
rameters). Our training parameters are 100 epochs, learning
rate of 0.1 with a multistep decay by 0.2 after 0.3, 0.6 and
0.8 of the training epochs, batch size of 128, optimizer is
Nesterov SGD with momentum of 0.9 and weight decay of
5e− 4. For FAM we use λ = 0.1.

FashionMNIST we modify to have three channels (just by
copying), resize to 32 × 32, apply cutout with 1 hole of
length 16, and normalize by 0.5. The training of Fashion-
MNIST is very unstable and has oscillating learning curves
with and without regularization. So, in one of the runs with
SAM regularizer the training diverged completely. The used
batch size is 64, learning rate is 0.01 with the same learning
rate scheduler as for SVHN, the training is done for 200
epochs. Weight decay and momentum are set as in SVHN
training.

Finally, in order to apply more computationally expensive
neuronwise flatness regularization, we add one more penul-
timate fully-connected layer in the architecture of WideRes-

Net with 64 neurons. Our experiments reveal that this addi-
tional layer does not change the outcome of the training in
case of non-flatness regularized run.

With the described setup we did not achieve the accuracy
reported in the original paper, that are 0.99± 0.01 error for
SAM on SVHN with auto-augmentation and 1.14 ± 0.04
for baseline training on SVHN with auto-augmentation;
3.61± 0.06 error for SAM on FashionMNIST with cutout
and 3.86 ± 0.14 for baseline training on FashionMNIST
with cutout.

We report the results we achieved in Table 1 on the lines
corresponding to SVHN and FashionMNIST.

Additionally, on the example of FashionMNIST training, we
demonstrate (in Figure 1a) that FAM indeed allows to reach
smoother loss development and leads to a better value, than
SAM or baseline training. Analogous picture is observed in
Figure 1b for the development of validation accuracy.

4.2. Medical Shape Reconstruction

3D shape reconstruction has important applications in both
computer vision (Smith et al., 2020; Chibane et al., 2020)
and medical imaging (Amiranashvili et al., 2022; Li et al.,
2021). Learning-based methods for shape reconstruction
has become increasingly popular in recent years, however,
often suffer from generalization issues i.e., a neural network
cannot generalize properly to shape variations that are not
seen during training. In this experiment, we demonstrate
that our FAM regularizer can effectively mitigate the gen-
eralization problem in a skull shape reconstruction task,
where a neural network learns to reconstruct anatomically
plausible skulls from defective ones (Li et al., 2021; Kodym
et al., 2020). Here, due to the large size of the layers, we
used the approximated layerwise flatness measure for FAM
optimization.

4.2.1. DATASET

The skull dataset used in this experiment contains 100 binary
skull images for training and another 100 for evaluation. The
surface of a skull shape is constituted by the non-zero voxels
(i.e., the ‘1’s), and we create defective skulls by removing a
portion of such voxels from each image. For the evaluation
set, two defects are created for each image - one is similar to
the defects in the training set while the other is significantly
different in terms of its shape and size, as well as its position
on the skull surface. The dimension of the skull images is
643.

4.2.2. NETWORK ARCHITECTURE AND EXPERIMENTAL
SETUP

The neural network (∼ 1M trainable parameters) follows
a standard auto-encoder architecture, in which five two-
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Table 1. Results for Image Classification Tasks

Baseline SAM FAM
CIFAR10 95.53± 0.0001 95.61± 0.001 95.62± 0.002
CIFAR100 84.6 85.8 87.15
SVHN 97.72± 0.02 97.84± 0.05 97.81± 0.07
FashionMNIST 94.57± 0.28 94.99± 0.02 94.6± 0.04

(a) Validation loss development during training of WideResNet
on FashionMNIST, comparing the FAM regularizer to SAM and
baseline training without regularization..

(b) Validation accuracy development during training of WideResNet
on FashionMNIST.

Figure 1. Validation loss and accuracy development through FashionMNIST training.

strided convolutional and deconvolutional layers are used
for downsampling and upsampling respectively. The out-
put of the last convolutional layer is flattened and linearly
mapped to an eight-dimensional latent code, which is then
decoded by another linear layer before being passed on to
the first deconvolution. The network takes as input a defec-
tive skull and learns to reconstruct its defectless counterpart.
As a baseline we train the network using a Dice loss (Mil-
letari et al., 2016), and a Dice loss combined with the FAM
regularizer , which is applied to the second linear layer (of
size 64 × 8) of the network. We experimented with dif-
ferent coefficients λ that weigh the regularizer against the
Dice loss. All experiments use the Adam optimizer with
a constant learning rate of 10−4. The trained models are
evaluated on the two aforementioned evaluation sets, using
Dice similarity coefficient (DSC), Hausdorff distance (HD),
and 95 percentile Hausdorff distance (HD95). DSC is the
main metric in practice for skull shape reconstruction (Li
et al., 2021), measuring how well two shapes overlap (the
higher the better3), while the distance measures i.e., HD and
HD95 are supplementary.

3The Dice loss (Figure 2), on the contrary, is usually imple-
mented as 1−DSC, which we minimize during training.

4.2.3. RESULTS AND DISCUSSION

Figure 2 shows the Dice loss curves under different weight-
ing coefficients λ. Table 2 shows the quantitative results on
the two evaluation sets, and Figure 3 shows the distribution
of the evaluation results for λ = 0.02, 0.002, 0.0006 and
the baseline. The DSC (100), HD (100) and HD95 (100)
columns in Table 2 show the evaluation results at an interme-
diate training checkpoint (epoch 100). These results reveal
several interesting findings: (i) At both the intermediate
(epoch=100) and end checkpoint (epoch=200), the training
loss of the baseline network is clearly lower than that of the
regularized networks (Figure 2), whereas its test accuracy is
obviously worse than its regularized counterparts in terms
of all metrics (Table 2); (ii) The baseline network achieves
higher test accuracy (DSC) at the intermediate checkpoint
than at the end checkpoint, which is a clear indicator of
overfitting, while the test accuracy of a properly regularized
network (e.g., λ = 0.02, 0.002) on either evaluation set 1
or evaluation set 2 keeps improving as training progresses;
(iii) Even a very loose regularization (e.g., λ = 0.0006)
can prevent the Dice loss from decreasing until overfitting,
as opposed to the baseline network (Figure 2); (iv) It is
also worth mentioning that the scores on both evaluation
sets stay essentially unchanged for the FAM-regularized
network (e.g., λ = 0.02), indicating that moderately al-
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Figure 2. Curves of the Dice loss (y axis) with respect to training
epochs (x axis), under different λ. Note that the red (λ = 0.1) and
purple (λ = 0.7) lines overlap in this plot.

Figure 3. Boxplots of DSC, HD and HD95 given different λ (x
axis) on the two evaluation sets.

tering the defects (e.g., defect shape, size, position) does
not affect the network’s performance, while in contrast, the
baseline network performs worse on evaluation set 2 than
on evaluation set 1 in terms of all metrics.

Choosing a proper λ is important for a desired reconstruc-
tive performance. A large λ enforces a flat(ter) curve of the
loss with respect to the weights of the second linear layer,
which is responsible for decoding the latent codes. However,
over-regularization (in our case λ = 0.1, 0.7) can lead to un-
varied shape reconstructions by the decoder, since, in order
for the loss to remain unchanged, the second linear layer
has to give the same decoding for different latent codes 4.
Therefore, the quantitative results for λ = 0.1, 0.7 in Table
2 should be interpreted with care, i.e., the over-regularized
networks ‘find’ a universal reconstruction that somehow
matches well with different evaluation cases (hence achiev-
ing relatively high DSC), which nevertheless defies the rule
of case-specific reconstruction.

4Different skull shapes are expected to be encoded differently
through the downsampling path of the auto-encoder.

Figure 4. Development loss of the RTE training.

4.3. Transformers

Since the introduction of transformers (Vaswani et al., 2017),
large language models have revolutionized natural language
processing by consistently pushing the state-of-the-art in
various benchmark tasks (Devlin et al., 2019; Clark et al.,
2020; He et al., 2021). However, a recurring challenge in
the fine-tuning process of these models is the occurrence
of instabilities (Hua et al., 2021; Mosbach et al., 2021).
These instabilities can negatively impact the performance
and reliability of the fine-tuned models. In the following
section we, demonstrate how the application of FAM can
improve the downstream performance of transformers.

We fine-tune BERTBASE (110 million parameters) (Devlin
et al., 2019) to the Recognizing Textual Entailment (RTE)
dataset (Dagan et al., 2006) from the General Language
Understanding Evaluation benchmark (Wang et al., 2018).
The dataset consists of sentence pairs with binary labels that
indicate whether the meaning of one sentence is entailed
from its counterpart. In the past, this particular dataset was
found to be particularly prone to instabilities (Phang et al.,
2018).

In stark contrast to other experiments, we chose a much
larger weighting coefficient λ = 3e6, as lower values had
no influence on the training. Our training setup involved a
learning rate of λ = 2e−5, a batch size of 32, and a max-
imum sequence length of 128 for 20 epochs. We report
the average development set accuracy across five runs with
different random seeds. Table 3 presents the results of this
experiment. Notably, we discovered that fine-tuning with
FAM not only increases the model’s accuracy but also re-
duces the standard deviation between runs. Moreover, we
observed a progressive increase in validation loss through-
out the training when the regularizer was not employed,
indicating severe overfitting. While this phenomenon per-
sisted with FAM, its effect was less pronounced, as depicted
in Figure 4.
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Table 2. Quantitative Results for Skull Shape Reconstruction Given Different λ

methods evaluation set 1 evaluation set 2
DSC DSC (100) HD HD (100) HD95 HD95 (100) DSC DSC (100) HD HD (100) HD95 HD95 (100)

baseline 0.6464 0.6569 7.0130 7.1787 2.0635 2.0422 0.6413 0.6489 7.1421 7.1939 2.0924 2.1371
FAM, λ = 0.0006 0.7155 0.6817 6.5531 6.7772 1.8202 1.8281 0.7156 0.6762 6.5542 7.0115 1.8178 1.9088
FAM, λ = 0.002 0.7173 0.7175 6.4813 6.5478 1.8175 1.8281 0.7175 0.7176 6.4813 6.5478 1.8148 1.8281
FAM, λ = 0.02 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344
FAM, λ = 0.1 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345
FAM, λ = 0.7 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359

Table 3. Results for the fine-tuning on the RTE validation set.

Baseline FAM
Accuracy 0.67364 0.6982
Standard Deviation 0.018 0.0154
Max 0.6931 0.7184

5. Discussion and Conclusion
We have shown that regularizing based on the theoretically
sound relative flatness measure improves generalization in a
wide range of applications and model architectures, outper-
forming standard training and sometimes sharpness aware
minimization (Foret et al., 2021).

In our experiments (except for the skull reconstruction ex-
periments, due to the specific architecture of the network),
we have chosen the penultimate layer to compute relative
flatness, as suggested by Petzka et al. (2021). We leave a
comprehensive study of the impact of the choice of layer
(or even using multiple layers) on model quality for future
work.

Relative flatness is connected to generalization under the as-
sumption of locally constant labels in the representation (Pet-
zka et al., 2021). This assumption holds already for the input
space in many applications (e.g., image classification, and
NLP)—the definition of adversarial examples hinges on this
assumption. It implies, however, that flatness is not con-
nected to generalization for tasks where the assumption is
violated. The recent study by Kaddour et al. (2022) supports
this empirically by showing that regularizing wrt. flatness is
not always beneficial. For future work it would be interest-
ing to verify this study with FAM, testing the assumption of
locally constant labels, and expanding it to further tasks.

While current implementation of the FAM regularizer allows
for achieving better performance, the performance with
respect to the space consumption can be improved. This
currently also limits the applicability to convolutional layers,
since treating them like a standard layer would increase the
number of parameters greatly. This can be overcome by
determining the correct structure of the FAM regularizer
for convolutional layers and is an interesting direction for

future work.

In summary, the FAM regularizer is theoretically sound,
versatile and effective, requires no special loss function or
optimizer and can be readily applied in all deep learning
applications.
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Figure 5. Comparing non-vectorized and vectorized autograd, as
well as functorch in terms of the computation time for computing
the full Hessian of a single neural network layer for different layer
sizes.

A. Hessian Computation and Approximation
In practice, the training time for FAM regularization de-
pends on the method used for calculating the Hessian, re-
spectively approximating its trace in case of the simplified
relative flatness measure. In the following, we discuss sev-
eral practical approaches in pytorch (Paszke et al., 2019).

A.1. Computation of the Full Hessian

Computing the Hessian, i.e., the second derivatives wrt. a
neural network’s weights, can straight-forwardly be done in
pytorch using its autograd library. This method, however, is
not optimized for runtime. The torch.autograd library also
provides an experimental vectorized version of the Hessian
computation. It uses a vectorization map as the backend to
vectorize calls to autograd.grad, which means that it only
invokes it once instead of once per row, making it more
computationally efficient. We compare the non-vectorized
to the vectorized variant of torch.autograd. Recently, the
pytorch library functorch (in beta) provided a fast Hessian
computation method build on top of the autograd library and
also using a vectorization map. Additionally, it uses XLA,
an optimized compiler for machine learning that acceler-
ates linear algebra computations. This further accelerates
Hessian computation, but does not yet work with all neural
networks—in particular, the functorch Hessian computation
requires batch normalization layers to not track the running
statistics of training data. In Figure 5 we show that using
the vectorized approach substantially reduces computation
time by up to three orders of magnitude. For larger Hes-
sians, the functorch library further improves runtime over
the vectorized autograd method by an order of magnitude.
All experiments are performed on an NVIDIA RTX A6000
GPU.
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Figure 6. Computational time of the trace of the hessian for differ-
ent layer sizes using Functorch and Hutchinson’s method

A.2. Computation of the Trace of the Hessian

When the layers are high-dimensional, forming the full Hes-
sian can be memory and computationally expensive. Since
FAM requires the calculation of the trace of a Hessian, we
apply the trick of using the Hutchinson’s method (Hutchin-
son, 1990) to approximate the trace of the Hessian. The
version of Hutchinson’s trick we use is described as follows:

Let A ∈ RD×D and v ∈ RD be a random vector such that
E
[
vvT

]
= I . Then,

Tr(A) = E
[
vTAv

]
=

1

V

V∑
i=1

vTi Avi.

where v is generated using Rademacher distribution and
V is the number of Monte Carlo samples. The intuition
behind this method is that by averaging over many random
vectors, we can obtain an estimate of the trace of the matrix.
It has been proved that the trace estimator converges with
the smallest variance to the trace if we use Rademacher
random numbers (Tropp, 2012). This method is in general
very useful when we need to compute the trace of a function
of a matrix.

Computational time for the direct functorch computation of
the Hessian trace and for the Hutchinson’s trick is shown in
Figure 6.


