
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

FAM: Relative Flatness Aware Minimization

Anonymous Authors1

Abstract

Flatness of the loss curve around a model at hand
has been shown to empirically correlate with its
generalization ability. Optimizing for flatness has
been proposed as early as 1994 by Hochreiter and
Schmidthuber, and followed by more recent suc-
cessful sharpness-aware optimization techniques.
Their widespread adoption in practice, though,
is dubious because of the lack of theoretically
grounded connection between flatness and gen-
eralization, in particular in light of the reparame-
terization curse—certain reparameterizations of a
neural network change most flatness measures but
do not change generalization. Recent theoretical
work suggests that a particular relative flatness
measure can be connected to generalization and
solves the reparameterization curse. In this paper,
we derive a regularizer based on this relative flat-
ness that is easy to compute, fast, efficient, and
works with arbitrary loss functions. It requires
computing the Hessian only of a single layer of
the network, which makes it applicable to large
neural networks, and with it avoids an expensive
mapping of the loss surface in the vicinity of the
model. In an extensive empirical evaluation we
show that this relative flatness aware minimization
(FAM) improves generalization in a multitude of
applications and models, both in finetuning and
standard training.

1. Introduction
It has been repeatedly observed that the generalization per-
formance of a model at hand correlates with flatness of the
loss curve, i.e., how much the loss changes under pertur-
bations of the model parameters (Chaudhari et al., 2017;
Keskar et al., 2017; Foret et al., 2021; Zheng et al., 2020;
Sun et al., 2020; Wu et al., 2020; Liang et al., 2019; Yao
et al., 2019). The large-scale study by Jiang et al. (2020)
finds that such flatness-based measures have a higher cor-
relation with generalization than alternatives like weight
norms, margin-, and optimization-based measures. The gen-
eral conclusion is that flatness-based measures show the
most consistent correlation with generalization.

Naturally, optimizing for flatness promises to obtain better
generalizing models. Hochreiter & Schmidhuber (1994)
already proposed in 1994 a theoretically solid approach to
search for large flat regions by maximizing a box around the
model in which the loss is low. More recently, it was shown
that optimizing a flatness-based objective together with an
L2-regularization performs remarkably well in practice on
a variety of datasets and models (Foret et al., 2021). The
theoretical connection to generalization has been question-
able, though, in particular in light of negative results on
reparametrizations of ReLU neural networks (Dinh et al.,
2017): these reparameterizations change traditional mea-
sures of flatness, yet leave the model function and its gener-
alization unchanged, making these measures unreliable.

Recent work (Petzka et al., 2021) has shown that general-
ization can be rigorously connected to flatness of the loss
curve, resulting in a relative flatness measure that solves
the reparameterization issue. That is, the generalization gap
of a model depends on properties of the training set and a
measure

κ(wl) :=

d∑
s,s′=1

⟨wl
s,w

l
s′⟩ · Tr(Hs,s′(w

l)) ,

where wl ∈ Rd×m are the weights between a selected
layer l with m neurons and layer l + 1 with d neurons,
⟨wl

s,w
l
s′⟩ = wl

s(w
l
s′)

T the scalar product of two row vec-
tors (composed of the weights into neurons with index
s and s′ in layer l + 1), and Tr denotes the trace. It is
demonstrated that, measured on the penultimate layer, this
measure highly correlates with generalization. Sharpness-
aware minimization (SAM) (Foret et al., 2021) also opti-
mizes for a measure of flatness, but is not reparameteriza-
tion invariant—even under L2-regularization its invariance
is unclear, in particular wrt. neuronwise reparameteriza-
tions. The reparamterization-invariant extension of SAM,
ASAM (Kwon et al., 2021) is not theoretically connected to
generalization.

In this paper, we implement the relative flatness measure
of Petzka et al. (2021) as a regularizer for arbitrary loss
functions and derive its gradient for optimization. A re-
markable feature of the relative flatness measure is that it
is only applied to a single layer of a neural network, in
comparison to classical flatness (and sharpness) which takes

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

FAM: Relative Flatness Aware Minimization

into account the entire network. Petzka et al. (2021) have
shown that relative flatness in this layer corresponds to ro-
bustness to noise on the representation produced by this
layer. Therefore, FAM nudges the entire network to pro-
duce a robust representation in the chosen layer, in essence
similar to adversarial training. At the same time, it does
not require flatness wrt. the other weights, opening up the
design space for good minima. Since it suffices to compute
relative flatness wrt. a single layer, this relative flatness
based regularizer and its gradient can be computed much
more efficiently than any full-Hessian based flatness mea-
sure. Moreover, since the gradient can be computed directly,
no double backpropagation is required.

In an extensive empirical evaluation we show that the result-
ing relative flatness aware minimization (FAM) improves
the generalization performance of neural networks in a wide
range of applications and network architectures: We im-
prove test accuracy on image classification tasks (CIFAR10,
CIFAR100, SVHN, and FashionMNIST) on ResNET18
(outperforming reported best results for this architecture),
WideResNET28-10, and EffNet-B7 and compare it to SAM
regularizer. In a second group of experiments we reduce
DICE-loss substantially on a medical shape reconstruction
tasks using autoencoders and stabilize the language model
finetuning.

Our contributions are (i) a novel regularizer (FAM) based on
relative flatness that is easy to implement, flexible, and com-
patible with any thrice-differentiable loss function, and (ii)
an extensive empirical evaluation where we show that FAM
regularization improves the generalization performance of a
wide range of neural networks in several applications.

2. Related Work
Flatness of the loss surface around the weight parameters
is intimately connected to the amount of information that
the model with these parameters can be described with, i.e.,
if the region is flat enough and loss does not change, the
parameters can be described with less precision still allow-
ing to have a good performing model. Correspondingly,
the models in the flat region generalize better (Hochreiter
& Schmidhuber, 1994). Hochreiter & Schmidhuber (1994)
investigated a regularization that leads to a flatter region in
the aforementioned sense. Their results have shown that
indeed such optimization leads to better performing mod-
els. Following up, flatness of a minimizer was used to
explain generalization abilities of differently trained neural
networks (Keskar et al., 2016), where it was specifically
emphasized that calculation of a Hessian for modern mod-
els is prohibitively costly. Originating from the minimum
description length criteria for finding better generalizing
learning models, flatness became a pronounced concept in
the search for generalization criteria of large neural net-

works. The PAC-Bayes generalization bound rediscovers
the connection of the Hessian as flatness characteristic with
the generalization gap and the large-scale empirical evalu-
ation (Jiang et al., 2020) shows that all the generalization
measures based on flatness (in some definition) highly cor-
relate with the actual performance of models.

Regularization (implicit or explicit) is de facto considered to
be an answer to the good generalization abilities of an over-
parametrized model. New elaborate techniques of regular-
ization allow to beat state-of-the-art results in various areas.
Obviously, flatness can be considered as a good candidate
for a structural regularization, but since the size of the mod-
ern models grew significantly after 1994, straightforward
usage of the initial flatness measures is not feasible in the op-
timization. Analogously, approaches to flatness stimulation
from averaging over solutions (Izmailov et al., 2018) cannot
be backpropagated and directly used in the optimization
process. The closest research to the flatness optimization is
related to adversarial robustness—adversarial training aims
at keeping the loss of a model on a constant (low) level in the
surrounding of the training samples. Recent work proposes
an optimizer for neural networks that is approximating the
minimax problem of minimizing loss in the direction of the
largest loss in the surrounding of the model. This sharpness
aware minimization (SAM) (Foret et al., 2021) achieves
state-of-the-art results in multiple tasks, e.g., SVHN, and al-
lows for simple backpropagation through the proposed loss.
However, the exact proposed m-sharpness does not entirely
correspond to the theoretical motivation proposed by Foret
et al. (2021) based on PAC-Bayes generalization bound,
which might mean that the empirical success of SAM and
its variants (Kwon et al., 2021; Zhuang et al., 2022; Du et al.,
2021; Liu et al., 2022a;b) cannot be explained by theoreti-
cal PAC-Bayes flatness of the solution (Andriushchenko &
Flammarion, 2022; Wen et al., 2022).

3. Flatness Aware Minimization
In the following we give a detailed description of the pro-
posed regularization. For a differentiable loss function
ℓ(S,W) and a training set S, the regularized objective is

ℓ(S,W) + λκ(wl) ,

where λ is the regularization coefficient and wl ∈ Rm×d

denote the weights from from layer l to l + 1. To optimize
this objective, we compute its gradient (and omit the training
set S in the notation for clarity):

∇Wℓ(W) + λκ(wl) = ∇Wℓ(W) + λ∇Wκ(wl) (1)

Here, ∇Wℓ(W) is the standard gradient of the loss function.
It remains to determine ∇Wκ(wl).
Lemma 1. For a neural network with L layers and weights
W = (w1, . . . ,wL) with wk ∈ ROk×Pk

and a specific

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

FAM: Relative Flatness Aware Minimization

layer l ∈ [L] with weights wl ∈ Rd×m it holds that

∇Wκ(wl) = el

[
2

d∑
s=1

wl
sTr (Hs,i)

]
i∈[d]

+

 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t

p∈[Pk]

o∈[Ok]

k∈[L]

where el denotes the l-th standard unit vector in RL.

Proof.

∇Wκ(wl) = ∇W

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
Tr (Hs,s′)

=

d∑
s,s′=1

(
∇W

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

+

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
∇WTr (Hs,s′)

=

d∑

s,s′=1

(
∂

∂wk

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)︸ ︷︷ ︸
(I)

1≤k≤L

+

d∑

s,s′=1

〈
wl

s, w
l
s′
〉 ∂

∂wk
Tr (Hs,s′)︸ ︷︷ ︸

(II)

1≤k≤L

Let us simplify both parts, starting with (I), which is = 0
for all k ̸= l. For k = l it simplifies to

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

 d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

1≤i≤d

Now for each i ∈ [d] we have that

d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=2

d∑
s=1

wl
sTr (Hs,i) ,

where we have used the symmetry of Hs,s′ and the commu-
tativity of the inner product in the last step. Therefore, it
holds that

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

.

For the second part (II), let wk ∈ RO×P . Then,
∂

∂wk Tr (Hs,s′) can be expressed as

∂

∂wk
Tr (Hs,s′) =

∂

∂wk
Tr

[
∂2ℓ(W)

∂wl
s,t∂w

l
s′,t′

]
1≤t,t′≤m

=
∂

∂wk

m∑
t=1

∂2ℓ(W)

∂wl
s,t∂w

l
s′,t

=

[
m∑
t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t

]
1≤p≤P
1≤o≤O

Putting (I) and (II) together finally yields

∇Wκ(wl) = el

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

+

 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t

1≤k≤L

1≤p≤Pk

1≤o≤Ok

where el denotes the l-th standard unit vector in RL.

3.1. Computational Complexity

Computing the FAM regularizer requires computing the
Hessian wrt. the weights wl ∈ Rd×m of the feature layer,
which has computational complexity in O

(
d2m2

)
. From

this, the individual Hs,s′ can be selected. The inner product
computation has complexity O (dm), so that the overall
complexity of computing the regularizer is in O

(
d2m2

)
.

In order to train with the FAM regularizer, we have to com-
pute the gradient of the regularized loss wrt. the weights
W of the network. Computing the gradient of the loss
function in equation 1 has complexity O (|W|), where |W|
denotes the number of parameters in W. The computation
of ∇Wκ(wl) is decomposed into the sum of two parts in
Lemma 1. The first part has complexity O

(
d2m2

)
for com-

puting the Hessian and the inner product, as before. All
parts in the sum, however, have already been computed
when computing κ(wl). The second part requires comput-
ing the derivative of the Hessians Hs,s′ wrt. each parameter

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

FAM: Relative Flatness Aware Minimization

in W. Since we only need to compute the derivative wrt. the
trace, i.e., the sum of diagonal elements, the complexity is
in O (W). Therefore, the overall complexity of computing
the FAM regularizer is in

O
(
|W |+ d2m2 + |W|

)
= O

(
|W |+ d2m2

)
.

That is, the additional computational costs for using the
FAM regularizer is in O

(
d2m2

)
per iteration, i.e., in the

squared number of weights of the selected feature layer.

3.2. A Simplified Relative Flatness Measure

A more computationally efficient approximation to relative
flatness, proposed by Petzka et al. (2019), does not iterate
over individual neurons, but computes the weight norm of
layer l and the trace of the Hessian wrt. layer l:

κ̂(wl) = ∥wl∥22Tr (H) .

Computing this measure not only avoids the loop over all
pairs of neurons s, s′ ∈ [d], but also allows us to approx-
imate the trace of the Hessian, e.g., with Hutchinson’s
method (Yao et al., 2020). On top of the computational
efficiency, the trace approximation reduces the memory
footprint, enabling us to employ FAM regularization to even
larger layers—including large convolutional layers. We pro-
vide details on the implementation of Hessian computation
and Hessian trace approximation in Appendix A.

4. Experiments
In the following section we describe the empirical evalua-
tion of the proposed flatness regularization. We compare the
performance of FAM to the baseline without flatness related
optimization and to SAM. We use the SAM implementa-
tion for pytorch 1 with the parameters of the base optimizer
recommended by the authors. It should be mentioned here
that no matter of its popularity there is no official pytorch
implementation of the SAM optimizer, which results in mul-
titude of different implementations for each of the paper
using the approach. Moreover, there are multiple tricks that
should be considered when using SAM, e.g., one should
take care of normalization layers and check on which of the
two optimization steps they are active or non-active. We
run SAM for the same amount of epochs that FAM and
simple optimization, no matter that in the original work
the authors doubled the amount of epochs for non-SAM
approaches due to the doubled run time, thus giving SAM
an advantage in our experiments. Reported result for one of
the implementations of SAM on CIFAR10 with ResNet20
is 93.5% test accuracy 2. This is the closest reported result
to our setup and it should be expected that ResNet18 shows

1https://github.com/davda54/sam
2https://github.com/moskomule/sam.pytorch

worse result than ResNet20. Unfortunately, the results for
CIFAR100, SVHN, and FashionMNIST are not reported in
the implementations of SAM for pytorch, and the applica-
tion to medical reconstruction is not considered in previous
works.

We use the FAM regularizer computed on the penultimate
layer (or bottleneck layer), since it was demonstrated to be
predictive of generalization in Petzka et al. (2021). Inves-
tigating the impact of the regularizer on other layers is left
for future work.

Note on other flat-minima optimizers: There are several
extensions of SAM (Kwon et al., 2021; Zhuang et al., 2022;
Du et al., 2021; Liu et al., 2022a;b) and other flat-minima
optimizers, e.g., (Chaudhari et al., 2019; Sankar et al., 2021).
We follow Kaddour et al. (2022) and do not consider them
in this work due to their computational cost and/or lack of
performance gains.

4.1. Image Classification

Standard datasets for image classification are the baseline
experiments that confirm the effectiveness of the proposed
regularization. In particular, we worked with CIFAR10 and
CIFAR100 (Krizhevsky & Hinton, 2009), SVHN (Netzer
et al., 2011), and FashionMNIST (Xiao et al., 2017). We
compare our flatness regularized training to the state-of-the-
art flatness regularizer SAM. For this group of experiments
we used the setups from the original SAM paper in order
to compare to its performance. Nevertheless, due to the
different implementation, the exact numbers reported seem
to be unachievable—while we still see the improvement
from using SAM optimizer, both no regularization baseline
and SAM baseline are lower than in the original paper. For
all experiments in this group we use the original neuronwise
flatness measure for regularization without approximations
introduced in Sec. 3.2.

4.1.1. CIFAR10

We have chosen ResNet18 as an architecture to solve CI-
FAR10. While ResNet18 is not the state of the art for
this problem, it allows to confirm the hypothesis about per-
formance of our method. The reported accuracy of this
architecture on CIFAR10 is 95.55%. In our experiments we
compare this baseline, that is not using flatness-related opti-
mizations to SAM approach and our proposed regularization.
Standard augmentation strategy is applied, including ran-
domized cropping and horizontal flipping and normalization
of the images. For baseline training we use the following
parameters of optimization: SGD with batch size 64, weight
decay of 5e−4, momentum 0.9, and cosine annealing learn-
ing rate starting at 0.03 during 250 epochs. For FAM the
optimizer parameters are kept same and λ selected to be 0.1.

https://github.com/davda54/sam
https://github.com/moskomule/sam.pytorch

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

FAM: Relative Flatness Aware Minimization

Finally SAM was ran with SGD with a scheduler learning
rate 0.01 and momentum 0.9.

We report the results we achieved in Table 1 on the line
corresponding to CIFAR10.

4.1.2. CIFAR100

For solving this dataset we follow the approach taken by
Foret et al. (2021). We use an EfficientNet (Tan & Le, 2019)
(EffNet-B7) that is pretrained on ImageNet and then finetune
it for CIFAR100. For standard training and FAM regularized
training, the Adam optimizer had consistently the highest
performance (compared to SGD and rmsprop) with a batch
size of B = 32. The architecture achieves a baseline ac-
curacy of 84.6 without regularization, and SAM achieves
an accuracy of 85.8. The FAM regularizer improves the
accuracy to 87.15.

4.1.3. SVHN AND FASHIONMNIST

Both SVHN and FashionMNIST problems are reported to
reach state-of-the-art performance with SAM optimization
using WideResNet28-10 architecture (Zagoruyko & Ko-
modakis, 2016). It should be noted that SAM achieves
the reported state-of-the-art result on these datasets when
combined together with shake-shake regularization tech-
nique (Gastaldi, 2017), which we omitted.

The results reported by Foret et al. (2021) for SVHN are
obtained using the training dataset that includes extra data
(overall ∼ 600000 images). Due to the time constraints we
report results of training using only main training dataset
(∼ 70000 images). We apply AutoAugment SVHN pol-
icy (Cubuk et al., 2018), random cropping and horisontal
flip, cutout (DeVries & Taylor, 2017) with 1 hole of length
16 and normalization (using the CIFAR10 normalization pa-
rameters). Our training parameters are 100 epochs, learning
rate of 0.1 with a multistep decay by 0.2 after 0.3, 0.6 and
0.8 of the training epochs, batch size of 128, optimizer is
Nesterov SGD with momentum of 0.9 and weight decay of
5e− 4. For FAM we use λ = 0.1.

FashionMNIST we modify to have three channels (just by
copying), resize to 32 × 32, apply cutout with 1 hole of
length 16, and normalize by 0.5. The training of Fashion-
MNIST is very unstable and has oscillating learning curves
with and without regularization. So, in one of the runs with
SAM regularizer the training diverged completely. The used
batch size is 64, learning rate is 0.01 with the same learning
rate scheduler as for SVHN, the training is done for 200
epochs. Weight decay and momentum are set as in SVHN
training.

Finally, in order to apply more computationally expensive
neuronwise flatness regularization, we add one more penul-
timate fully-connected layer in the architecture of WideRes-

Net with 64 neurons. Our experiments reveal that this addi-
tional layer does not change the outcome of the training in
case of non-flatness regularized run.

With the described setup we did not achieve the accuracy
reported in the original paper, that are 0.99± 0.01 error for
SAM on SVHN with auto-augmentation and 1.14 ± 0.04
for baseline training on SVHN with auto-augmentation;
3.61± 0.06 error for SAM on FashionMNIST with cutout
and 3.86 ± 0.14 for baseline training on FashionMNIST
with cutout.

We report the results we achieved in Table 1 on the lines
corresponding to SVHN and FashionMNIST.

Additionally, on the example of FashionMNIST training, we
demonstrate (in Figure 1a) that FAM indeed allows to reach
smoother loss development and leads to a better value, than
SAM or baseline training. Analogous picture is observed in
Figure 1b for the development of validation accuracy.

4.2. Medical Shape Reconstruction

3D shape reconstruction has important applications in both
computer vision (Smith et al., 2020; Chibane et al., 2020)
and medical imaging (Amiranashvili et al., 2022; Li et al.,
2021). Learning-based methods for shape reconstruction
has become increasingly popular in recent years, however,
often suffer from generalization issues i.e., a neural network
cannot generalize properly to shape variations that are not
seen during training. In this experiment, we demonstrate
that our FAM regularizer can effectively mitigate the gen-
eralization problem in a skull shape reconstruction task,
where a neural network learns to reconstruct anatomically
plausible skulls from defective ones (Li et al., 2021; Kodym
et al., 2020). Here, due to the large size of the layers, we
used the approximated layerwise flatness measure for FAM
optimization.

4.2.1. DATASET

The skull dataset used in this experiment contains 100 binary
skull images for training and another 100 for evaluation. The
surface of a skull shape is constituted by the non-zero voxels
(i.e., the ‘1’s), and we create defective skulls by removing a
portion of such voxels from each image. For the evaluation
set, two defects are created for each image - one is similar to
the defects in the training set while the other is significantly
different in terms of its shape and size, as well as its position
on the skull surface. The dimension of the skull images is
643.

4.2.2. NETWORK ARCHITECTURE AND EXPERIMENTAL
SETUP

The neural network (∼ 1M trainable parameters) follows
a standard auto-encoder architecture, in which five two-

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

FAM: Relative Flatness Aware Minimization

Table 1. Results for Image Classification Tasks

Baseline SAM FAM
CIFAR10 95.53± 0.0001 95.61± 0.001 95.62± 0.002
CIFAR100 84.6 85.8 87.15
SVHN 97.72± 0.02 97.84± 0.05 97.81± 0.07
FashionMNIST 94.57± 0.28 94.99± 0.02 94.6± 0.04

(a) Validation loss development during training of WideResNet
on FashionMNIST, comparing the FAM regularizer to SAM and
baseline training without regularization..

(b) Validation accuracy development during training of WideResNet
on FashionMNIST.

Figure 1. Validation loss and accuracy development through FashionMNIST training.

strided convolutional and deconvolutional layers are used
for downsampling and upsampling respectively. The out-
put of the last convolutional layer is flattened and linearly
mapped to an eight-dimensional latent code, which is then
decoded by another linear layer before being passed on to
the first deconvolution. The network takes as input a defec-
tive skull and learns to reconstruct its defectless counterpart.
As a baseline we train the network using a Dice loss (Mil-
letari et al., 2016), and a Dice loss combined with the FAM
regularizer , which is applied to the second linear layer (of
size 64 × 8) of the network. We experimented with dif-
ferent coefficients λ that weigh the regularizer against the
Dice loss. All experiments use the Adam optimizer with
a constant learning rate of 10−4. The trained models are
evaluated on the two aforementioned evaluation sets, using
Dice similarity coefficient (DSC), Hausdorff distance (HD),
and 95 percentile Hausdorff distance (HD95). DSC is the
main metric in practice for skull shape reconstruction (Li
et al., 2021), measuring how well two shapes overlap (the
higher the better3), while the distance measures i.e., HD and
HD95 are supplementary.

3The Dice loss (Figure 2), on the contrary, is usually imple-
mented as 1−DSC, which we minimize during training.

4.2.3. RESULTS AND DISCUSSION

Figure 2 shows the Dice loss curves under different weight-
ing coefficients λ. Table 2 shows the quantitative results on
the two evaluation sets, and Figure 3 shows the distribution
of the evaluation results for λ = 0.02, 0.002, 0.0006 and
the baseline. The DSC (100), HD (100) and HD95 (100)
columns in Table 2 show the evaluation results at an interme-
diate training checkpoint (epoch 100). These results reveal
several interesting findings: (i) At both the intermediate
(epoch=100) and end checkpoint (epoch=200), the training
loss of the baseline network is clearly lower than that of the
regularized networks (Figure 2), whereas its test accuracy is
obviously worse than its regularized counterparts in terms
of all metrics (Table 2); (ii) The baseline network achieves
higher test accuracy (DSC) at the intermediate checkpoint
than at the end checkpoint, which is a clear indicator of
overfitting, while the test accuracy of a properly regularized
network (e.g., λ = 0.02, 0.002) on either evaluation set 1
or evaluation set 2 keeps improving as training progresses;
(iii) Even a very loose regularization (e.g., λ = 0.0006)
can prevent the Dice loss from decreasing until overfitting,
as opposed to the baseline network (Figure 2); (iv) It is
also worth mentioning that the scores on both evaluation
sets stay essentially unchanged for the FAM-regularized
network (e.g., λ = 0.02), indicating that moderately al-

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

FAM: Relative Flatness Aware Minimization

Figure 2. Curves of the Dice loss (y axis) with respect to training
epochs (x axis), under different λ. Note that the red (λ = 0.1) and
purple (λ = 0.7) lines overlap in this plot.

Figure 3. Boxplots of DSC, HD and HD95 given different λ (x
axis) on the two evaluation sets.

tering the defects (e.g., defect shape, size, position) does
not affect the network’s performance, while in contrast, the
baseline network performs worse on evaluation set 2 than
on evaluation set 1 in terms of all metrics.

Choosing a proper λ is important for a desired reconstruc-
tive performance. A large λ enforces a flat(ter) curve of the
loss with respect to the weights of the second linear layer,
which is responsible for decoding the latent codes. However,
over-regularization (in our case λ = 0.1, 0.7) can lead to un-
varied shape reconstructions by the decoder, since, in order
for the loss to remain unchanged, the second linear layer
has to give the same decoding for different latent codes 4.
Therefore, the quantitative results for λ = 0.1, 0.7 in Table
2 should be interpreted with care, i.e., the over-regularized
networks ‘find’ a universal reconstruction that somehow
matches well with different evaluation cases (hence achiev-
ing relatively high DSC), which nevertheless defies the rule
of case-specific reconstruction.

4Different skull shapes are expected to be encoded differently
through the downsampling path of the auto-encoder.

Figure 4. Development loss of the RTE training.

4.3. Transformers

Since the introduction of transformers (Vaswani et al., 2017),
large language models have revolutionized natural language
processing by consistently pushing the state-of-the-art in
various benchmark tasks (Devlin et al., 2019; Clark et al.,
2020; He et al., 2021). However, a recurring challenge in
the fine-tuning process of these models is the occurrence
of instabilities (Hua et al., 2021; Mosbach et al., 2021).
These instabilities can negatively impact the performance
and reliability of the fine-tuned models. In the following
section we, demonstrate how the application of FAM can
improve the downstream performance of transformers.

We fine-tune BERTBASE (110 million parameters) (Devlin
et al., 2019) to the Recognizing Textual Entailment (RTE)
dataset (Dagan et al., 2006) from the General Language
Understanding Evaluation benchmark (Wang et al., 2018).
The dataset consists of sentence pairs with binary labels that
indicate whether the meaning of one sentence is entailed
from its counterpart. In the past, this particular dataset was
found to be particularly prone to instabilities (Phang et al.,
2018).

In stark contrast to other experiments, we chose a much
larger weighting coefficient λ = 3e6, as lower values had
no influence on the training. Our training setup involved a
learning rate of λ = 2e−5, a batch size of 32, and a max-
imum sequence length of 128 for 20 epochs. We report
the average development set accuracy across five runs with
different random seeds. Table 3 presents the results of this
experiment. Notably, we discovered that fine-tuning with
FAM not only increases the model’s accuracy but also re-
duces the standard deviation between runs. Moreover, we
observed a progressive increase in validation loss through-
out the training when the regularizer was not employed,
indicating severe overfitting. While this phenomenon per-
sisted with FAM, its effect was less pronounced, as depicted
in Figure 4.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

FAM: Relative Flatness Aware Minimization

Table 2. Quantitative Results for Skull Shape Reconstruction Given Different λ

methods evaluation set 1 evaluation set 2
DSC DSC (100) HD HD (100) HD95 HD95 (100) DSC DSC (100) HD HD (100) HD95 HD95 (100)

baseline 0.6464 0.6569 7.0130 7.1787 2.0635 2.0422 0.6413 0.6489 7.1421 7.1939 2.0924 2.1371
FAM, λ = 0.0006 0.7155 0.6817 6.5531 6.7772 1.8202 1.8281 0.7156 0.6762 6.5542 7.0115 1.8178 1.9088
FAM, λ = 0.002 0.7173 0.7175 6.4813 6.5478 1.8175 1.8281 0.7175 0.7176 6.4813 6.5478 1.8148 1.8281
FAM, λ = 0.02 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344
FAM, λ = 0.1 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345
FAM, λ = 0.7 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359

Table 3. Results for the fine-tuning on the RTE validation set.

Baseline FAM
Accuracy 0.67364 0.6982
Standard Deviation 0.018 0.0154
Max 0.6931 0.7184

5. Discussion and Conclusion
We have shown that regularizing based on the theoretically
sound relative flatness measure improves generalization in a
wide range of applications and model architectures, outper-
forming standard training and sometimes sharpness aware
minimization (Foret et al., 2021).

In our experiments (except for the skull reconstruction ex-
periments, due to the specific architecture of the network),
we have chosen the penultimate layer to compute relative
flatness, as suggested by Petzka et al. (2021). We leave a
comprehensive study of the impact of the choice of layer
(or even using multiple layers) on model quality for future
work.

Relative flatness is connected to generalization under the as-
sumption of locally constant labels in the representation (Pet-
zka et al., 2021). This assumption holds already for the input
space in many applications (e.g., image classification, and
NLP)—the definition of adversarial examples hinges on this
assumption. It implies, however, that flatness is not con-
nected to generalization for tasks where the assumption is
violated. The recent study by Kaddour et al. (2022) supports
this empirically by showing that regularizing wrt. flatness is
not always beneficial. For future work it would be interest-
ing to verify this study with FAM, testing the assumption of
locally constant labels, and expanding it to further tasks.

While current implementation of the FAM regularizer allows
for achieving better performance, the performance with
respect to the space consumption can be improved. This
currently also limits the applicability to convolutional layers,
since treating them like a standard layer would increase the
number of parameters greatly. This can be overcome by
determining the correct structure of the FAM regularizer
for convolutional layers and is an interesting direction for

future work.

In summary, the FAM regularizer is theoretically sound,
versatile and effective, requires no special loss function or
optimizer and can be readily applied in all deep learning
applications.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

FAM: Relative Flatness Aware Minimization

References
Amiranashvili, T., Lüdke, D., Li, H. B., Menze, B., and Zachow,

S. Learning shape reconstruction from sparse measurements
with neural implicit functions. In International Conference on
Medical Imaging with Deep Learning, pp. 22–34. PMLR, 2022.
5

Andriushchenko, M. and Flammarion, N. Towards understanding
sharpness-aware minimization. In International Conference on
Machine Learning, pp. 639–668. PMLR, 2022. 2

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J. T., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide valleys.
In Proceedings of the International Conference of Learning
Representations, 2017. 1

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi,
C., Borgs, C., Chayes, J., Sagun, L., and Zecchina, R. Entropy-
sgd: Biasing gradient descent into wide valleys. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2019(12):124018,
2019. 4

Chibane, J., Alldieck, T., and Pons-Moll, G. Implicit functions in
feature space for 3d shape reconstruction and completion. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6970–6981, 2020. 5

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. ELECTRA:
Pre-training text encoders as discriminators rather than genera-
tors. In International Conference on Learning Representations,
2020. 7

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V.
Autoaugment: Learning augmentation policies from data. arXiv
preprint arXiv:1805.09501, 2018. 5

Dagan, I., Glickman, O., and Magnini, B. The pascal recognising
textual entailment challenge. In Quiñonero-Candela, J., Dagan,
I., Magnini, B., and d’Alché Buc, F. (eds.), Machine Learning
Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pp. 177–
190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 7

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. 7

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017. 5

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima
can generalize for deep nets. In Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70, pp.
1019–1028. JMLR. org, 2017. 1

Du, J., Yan, H., Feng, J., Zhou, J. T., Zhen, L., Goh, R. S. M., and
Tan, V. Efficient sharpness-aware minimization for improved
training of neural networks. In International Conference on
Learning Representations, 2021. 2, 4

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-
aware minimization for efficiently improving generalization.
In Proceedings of the International Conference on Learning
Representations, 2021. 1, 2, 5, 8

Gastaldi, X. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017. 5

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-enhanced
bert with disentangled attention. In International Conference
on Learning Representations, 2021. 7

Hochreiter, S. and Schmidhuber, J. Simplifying neural nets by
discovering flat minima. In Advances in neural information
processing systems. Curran Associates, Inc., 1994. 1, 2

Hua, H., Li, X., Dou, D., Xu, C., and Luo, J. Noise stability
regularization for improving bert fine-tuning. In Proceedings
of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, pp. 3229–3241, 2021. 7

Hutchinson, M. F. A stochastic estimator of the trace of the influ-
ence matrix for laplacian smoothing splines. Communications
in Statistics-Simulation and Computation, 19(2):433–450, 1990.
11

Izmailov, P., Wilson, A., Podoprikhin, D., Vetrov, D., and Garipov,
T. Averaging weights leads to wider optima and better gen-
eralization. In 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, pp. 876–885, 2018. 2

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S.
Fantastic generalization measures and where to find them. In
International Conference on Learning Representations, 2020.
1, 2

Kaddour, J., Liu, L., Silva, R., and Kusner, M. When do flat
minima optimizers work? In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2022. 4, 8

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. On large-batch training for deep learning: Gener-
alization gap and sharp minima. In Proceedings of International
Conference on Learning Representations, 2016. 2

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. On large-batch training for deep learning: Gener-
alization gap and sharp minima. In Proceedings of the Interna-
tional Conference on Learning Representatiosn, 2017. 1

Kodym, O., Španěl, M., and Herout, A. Skull shape reconstruction
using cascaded convolutional networks. Computers in Biology
and Medicine, 123:103886, 2020. 5

Krizhevsky, A. and Hinton, G. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 2009.
4

Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive
sharpness-aware minimization for scale-invariant learning of
deep neural networks. In International Conference on Machine
Learning, pp. 5905–5914. PMLR, 2021. 1, 2, 4

Li, J., Pimentel, P., Szengel, A., Ehlke, M., Lamecker, H., Za-
chow, S., Estacio, L., Doenitz, C., Ramm, H., Shi, H., et al.
Autoimplant 2020-first miccai challenge on automatic cranial
implant design. IEEE transactions on medical imaging, 40(9):
2329–2342, 2021. 5, 6

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

FAM: Relative Flatness Aware Minimization

Liang, T., Poggio, T., Rakhlin, A., and Stokes, J. Fisher-rao metric,
geometry, and complexity of neural networks. In International
Conference on Artificial Intelligence and Statistics (AISTATS),
2019. 1

Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. Towards
efficient and scalable sharpness-aware minimization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12360–12370, 2022a. 2, 4

Liu, Y., Mai, S., Cheng, M., Chen, X., Hsieh, C.-J., and You, Y.
Random sharpness-aware minimization. Advances in neural
information processing systems, 2022b. 2, 4

Milletari, F., Navab, N., and Ahmadi, S.-A. V-net: Fully convolu-
tional neural networks for volumetric medical image segmen-
tation. In 2016 fourth international conference on 3D vision
(3DV), pp. 565–571. Ieee, 2016. 6

Mosbach, M., Andriushchenko, M., and Klakow, D. On the sta-
bility of fine-tuning {bert}: Misconceptions, explanations, and
strong baselines. In International Conference on Learning Rep-
resentations, 2021. 7

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
A. Reading digits in natural images with unsupervised fea-
ture learning. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2011. 4

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. 11

Petzka, H., Adilova, L., Kamp, M., and Sminchisescu, C. A
reparameterization-invariant flatness measure for deep neural
networks. In Science meets Engineering of Deep Learning 2019.
Neural Information Processing Systems (NIPS), 2019. 4

Petzka, H., Kamp, M., Adilova, L., Sminchisescu, C., and Boley,
M. Relative flatness and generalization. Advances in Neural
Information Processing Systems, 34:18420–18432, 2021. 1, 2,
4, 8

Phang, J., Févry, T., and Bowman, S. R. Sentence encoders
on stilts: Supplementary training on intermediate labeled-data
tasks. arXiv preprint arXiv:1811.01088, 2018. 7

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Balasubra-
manian, V. N. A deeper look at the hessian eigenspectrum of
deep neural networks and its applications to regularization. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9481–9488, 2021. 4

Smith, E., Calandra, R., Romero, A., Gkioxari, G., Meger, D.,
Malik, J., and Drozdzal, M. 3d shape reconstruction from
vision and touch. Advances in Neural Information Processing
Systems, 33:14193–14206, 2020. 5

Sun, X., Zhang, Z., Ren, X., Luo, R., and Li, L. Exploring the
vulnerability of deep neural networks: A study of parameter
corruption. arXiv preprint arXiv:2006.05620, 2020. 1

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on
machine learning, pp. 6105–6114. PMLR, 2019. 5

Tropp, J. A. User-friendly tail bounds for sums of random matrices.
Foundations of computational mathematics, 12:389–434, 2012.
11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Attention is
all you need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 7

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. 7

Wen, K., Ma, T., and Li, Z. How does sharpness-aware minimiza-
tion minimizes sharpness? In OPT 2022: Optimization for
Machine Learning workshop at NeurIPS, 2022. 2

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation
helps robust generalization. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 2958–2969. Curran
Associates, Inc., 2020. 1

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017. 4

Yao, Z., Gholami, A., Lei, Q., Keutzer, K., and Mahoney, M. W.
Hessian-based analysis of large batch training and robustness
to adversaries. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 1

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Pyhessian:
Neural networks through the lens of the hessian. In 2020 IEEE
international conference on big data (Big data), pp. 581–590.
IEEE, 2020. 4

Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016. 5

Zheng, Y., Zhang, R., and Mao, Y. Regularizing neural net-
works via adversarial model perturbation. arXiv preprint
arXiv:2010.04925, 2020. 1

Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek,
N. C., s Duncan, J., Liu, T., et al. Surrogate gap minimization
improves sharpness-aware training. In International Conference
on Learning Representations, 2022. 2, 4

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

FAM: Relative Flatness Aware Minimization

16*16 32*32 64*64 128*128 256*256
Layer Size (Input*Output)

10 2

10 1

100

101

Co
m

pu
tio

na
l t

im
e

(s
ec

)
Non_Vectorized
Vectorized
Functorch

Figure 5. Comparing non-vectorized and vectorized autograd, as
well as functorch in terms of the computation time for computing
the full Hessian of a single neural network layer for different layer
sizes.

A. Hessian Computation and Approximation
In practice, the training time for FAM regularization de-
pends on the method used for calculating the Hessian, re-
spectively approximating its trace in case of the simplified
relative flatness measure. In the following, we discuss sev-
eral practical approaches in pytorch (Paszke et al., 2019).

A.1. Computation of the Full Hessian

Computing the Hessian, i.e., the second derivatives wrt. a
neural network’s weights, can straight-forwardly be done in
pytorch using its autograd library. This method, however, is
not optimized for runtime. The torch.autograd library also
provides an experimental vectorized version of the Hessian
computation. It uses a vectorization map as the backend to
vectorize calls to autograd.grad, which means that it only
invokes it once instead of once per row, making it more
computationally efficient. We compare the non-vectorized
to the vectorized variant of torch.autograd. Recently, the
pytorch library functorch (in beta) provided a fast Hessian
computation method build on top of the autograd library and
also using a vectorization map. Additionally, it uses XLA,
an optimized compiler for machine learning that acceler-
ates linear algebra computations. This further accelerates
Hessian computation, but does not yet work with all neural
networks—in particular, the functorch Hessian computation
requires batch normalization layers to not track the running
statistics of training data. In Figure 5 we show that using
the vectorized approach substantially reduces computation
time by up to three orders of magnitude. For larger Hes-
sians, the functorch library further improves runtime over
the vectorized autograd method by an order of magnitude.
All experiments are performed on an NVIDIA RTX A6000
GPU.

0 50 100 150 200 250 300
Trace values

10 2

10 1

100

Co
m

pu
tio

na
l t

im
e(

se
c)

16*16

32*32
64*64

128*128

16*16
32*32

64*64

128*128 512*512

1024*1024

Functorch
Hutchinson

Figure 6. Computational time of the trace of the hessian for differ-
ent layer sizes using Functorch and Hutchinson’s method

A.2. Computation of the Trace of the Hessian

When the layers are high-dimensional, forming the full Hes-
sian can be memory and computationally expensive. Since
FAM requires the calculation of the trace of a Hessian, we
apply the trick of using the Hutchinson’s method (Hutchin-
son, 1990) to approximate the trace of the Hessian. The
version of Hutchinson’s trick we use is described as follows:

Let A ∈ RD×D and v ∈ RD be a random vector such that
E
[
vvT

]
= I . Then,

Tr(A) = E
[
vTAv

]
=

1

V

V∑
i=1

vTi Avi.

where v is generated using Rademacher distribution and
V is the number of Monte Carlo samples. The intuition
behind this method is that by averaging over many random
vectors, we can obtain an estimate of the trace of the matrix.
It has been proved that the trace estimator converges with
the smallest variance to the trace if we use Rademacher
random numbers (Tropp, 2012). This method is in general
very useful when we need to compute the trace of a function
of a matrix.

Computational time for the direct functorch computation of
the Hessian trace and for the Hutchinson’s trick is shown in
Figure 6.

